Solutions 1

Decimals, Fractions, Percentage \& Standard Form.

Decimals

1. $8.1-4.85=\mathbf{3 . 2 5}$
2. $43-22.4=\mathbf{2 0 . 6}$
3. $5.7+15.6=\mathbf{2 1 . 3}$
4. $31.4-9.03=\mathbf{2 2 . 3 7}$

Fractions

5. $6+\frac{25}{30}+\frac{18}{30}=6+\frac{43}{30}=7 \frac{13}{30}$
6. $3+\frac{6}{15}-\frac{10}{15}=3-\frac{4}{15}=2 \frac{11}{15}$
7. $\frac{11}{A^{1}} \times \frac{A^{1}}{3}=\frac{11}{3}=3 \frac{2}{3}$
8. $\frac{11}{2} \div \frac{11}{3}=\frac{K^{1}}{2} \times \frac{3}{K^{1}}=\frac{3}{2}=1 \frac{1}{2}$
9. $\frac{3}{8} \times\left(\frac{5}{3}-\frac{4}{7}\right)=\frac{3}{8} \times\left(\frac{35}{21}-\frac{12}{21}\right)=\frac{\not \beta^{1}}{8} \times \frac{23}{21}=\frac{23}{56}$
10. $\frac{3}{7} \times\left(\frac{11}{6}+\frac{3}{4}\right)=\frac{3}{7} \times\left(\frac{22}{12}+\frac{9}{12}\right)$
$=\frac{\not \beta^{1}}{7} \times \frac{31}{\not 2^{4}}=\frac{31}{28}=1 \frac{3}{28}$

Various

11. $23+36 \times \frac{3}{4}=23+\frac{36^{9}}{1} \times \frac{3}{4^{11}}=23+27=50$
12. 10% is $£ 85 \times 3=£ 255$

$$
\begin{array}{r}
1 \%=£ 8.50 \times 2=\frac{£ 17}{\underline{£ 272}} \text { is }
\end{array}
$$

13. $\frac{1}{8}$ of 544 is 68 , so $\frac{3}{8}$ is $68 \times 3=204$

Using Percentages

1. $4500 \times 1.009^{3}=4622.59678 \ldots 4620(\mathbf{3 ~ s f})$
2. $7000 \times 0.86^{4}=3829.0571 \ldots 3830$ (nst 10)
3. House: $£ 70000 \times 1.07^{3}=£ 85753.01$

Contents: $£ 45000 \times 0.91^{3}=£ 33910.70$
Total value: $=£ 119663.71$
4. Factory: $£ 435000 \times 1.053^{2}=£ 482331.92$

Plant \& Mcy: £ $156000 \times 0.915^{2}=£ 130607.10$
Total value: $=\mathbf{£} \mathbf{6 1 2} 939.02$
5. $66^{2} / 3 \%=\frac{2}{3} \quad$ So, ${ }^{2} / 3$ off means you pay ${ }^{1} / 3$

They pay $1 / 3$ of $£ 16.50=£ 5.50$
6. Percentage Increase $=\frac{1.4}{54.9} \times 100=2.55 \%$

Price in $2000=56.3 \times 1.0255^{4}=62.3 \mathrm{p}$ per litre

Reversing the change

7. Ex-VAT Price $\times 1.175=£ 695$

Ex-VAT Price $=£ 695 \div 1.175=£ 591.49$
8. Stock $\times 0.4=50(60 \%$ sold $=40 \%$ left $)$

Stock $=50 \div 0.4=125$
9. Original Price $\times 0.4=£ 4640$

Original Price $=£ 4640 \div 0.4=£ 11600$
10. Original Price $\times 0.875=£ 14875$

Original Price $=£ 14875 \div 0.875=£ 17000$

Standard Form

1. $8 \times 4.80 \times 10^{8}=3.84 \times 10^{9}$
2. $7.1 \times 10^{7} \div 300=2.4 \times 10^{5}$
3. Time $=$ Distance \div Speed

Time $=2.3 \times 10^{8} \div 3.0 \times 10^{5}$
Time $=766.67 \mathrm{sec}=13$ minutes.
4. Distance $=$ circumference $=2 \pi r$

Distance $=2 \pi \times 0.6 \times 10^{7}$
Speed $=$ Distance \div Time
Time $=88 \times 24=2112$ hours
Speed $=2 \pi \times 0.6 \times 10^{7} \div 2112$
Speed $=17849.95 \ldots=18000 \mathrm{kph}(2 \mathrm{sf})$
5. $1.8 \times 10^{3} \times 9.11 \times 10^{-31}=1.6398 \times 10^{-27}$
$=1.6 \times 10^{-27} \mathrm{~kg}(2 \mathrm{sf})$
6. $5 \times 10^{6} \times 9.46 \times 10^{12} \mathrm{~km}$
$=4.73 \times 10^{19} \mathrm{~km}$
7. 1 year $($ not leap year $)=365 \times 24 \times 60 \times 60$

$$
=31536000 \text { seconds }
$$

Profit $=£ 3.2 \times 10^{9} \div 31536000=£ 101.47133 \ldots$ $=£ 101$ per second.
8. No. of days $=26(J)+31(J)+31(A)+20(S)$

$$
\begin{aligned}
=108 & \\
2.925 \times 10^{7} \div 108 & =270833.333 \\
& =270833 \text { visitors per day }
\end{aligned}
$$

9. $5.97 \times 10^{24} \div 2.2 \times 10^{30} \times 100$

$$
\begin{aligned}
& =0.0002713 \ldots \ldots \% \\
& =2.71 \times 10^{-4} \%(3 \mathrm{sf})
\end{aligned}
$$

Solutions Algebra-1

Basic Algebraic operations

Evaluation

1. $30-3(-1)^{2}(-6)=\mathbf{4 8}$

Simplification

2. $12 x-8-20 x-5 \rightarrow-\mathbf{8 x}-\mathbf{1 3}$
3. $6 \mathrm{a}^{2}-15 \mathrm{ab}-2 \mathrm{ab}+5 \mathrm{~b}^{2} \rightarrow \mathbf{6 a}^{\mathbf{2}} \mathbf{- 1 7 a b}+\mathbf{5} \mathbf{b}^{\mathbf{2}}$
4. $2 x^{2}+6 x-x-3+x^{2}-8 x+16$

$$
\rightarrow \quad 3 x^{2}-3 x+13
$$

5. $(3 y-4)(3 y-4) \rightarrow \mathbf{9} \mathbf{y}^{2}-\mathbf{2 4 y}+\mathbf{1 6}$
6.

	$3 \mathrm{x}^{2}$	4 x	-1
2 x	$6 \mathrm{x}^{3}$	$8 \mathrm{x}^{\mathrm{x}}$	-2 x
-3	$-9 \mathrm{x}^{2}$	-12 x	3

$$
\rightarrow 6 x^{3}-x^{2}-14 x+3
$$

7. $3 x(2 x-3)$
8. $(2 a+3 b)(2 a-3 b)$
9. a) $(3 x+y)(3 x-y)$
b) $\frac{6 x+2 y}{9 x^{2}-y^{2}} \rightarrow \frac{2(3 x+y)}{\frac{(3 x+y)(3 x-y)}{2}} \rightarrow \frac{2}{3 x-y}$
10. a) $(a+3 b)(a-3 b)$
b) $\quad \frac{a^{2}-9 b^{2}}{2 a+6 b} \rightarrow \frac{(a+36)(a-3 b)}{2(a+3 b)} \rightarrow \frac{a-3 b}{2}$
11. a) $(x+3)(x-3)$
b) $\quad \frac{4(5 x+3)}{25 x^{2}-9} \rightarrow \frac{4(5 x+3)}{(5 x+3)(5 x-3)} \rightarrow \frac{4}{5 x-3}$
12. $\frac{15 x-20}{9 x^{2}-16} \rightarrow \frac{5(3 x-4)}{(3 x+4)(3 x-4)} \rightarrow \frac{5}{3 x+43}$
13. a) $2 x(x-3)$
b) $\frac{2 x^{2}-6 x}{x^{2}-9} \rightarrow \frac{2 x(x-3)}{(x+3)(x-3)} \rightarrow \frac{2 x}{x+3}$
14. $3 x^{2}-13 x-10 \rightarrow(3 x+2)(x-5)$
15. $5-2-6 x=27 \quad-24=6 x \quad x=-4$
16. $5+3 a=a-15 \quad 2 a=-20 \quad a=-10$
17. $2 a+4 b=-7 \ldots$ (1) multiply (1) $\times 5$ and (2) $\times 4$ $3 a-5 b=17$... (2)
then add to get $a=11 / 2$, subst. to get $b=-2 \frac{1}{2}$
18. $5 a+3 b=9 \ldots$ (1) multiply (1) $\times 2$ and (2) $\times 3$ $7 a-2 b=25$
then add to get $\mathrm{a}=3$, subst. to get $\mathrm{b}=-2$

Functions

1. $f(-2)=(-2)^{2}-2(-2) \rightarrow 4+4 \rightarrow 8$
2. $h(-2)=15(-2)-3(-2)^{2} \rightarrow-30-12 \rightarrow-42$
3. $f(-3)=\frac{(-3)^{3}+(-3)^{2}+2}{5(-3)-1} \rightarrow \frac{-27+9+11}{-16} \rightarrow \frac{7}{16}$
4. a) $f(-3)=9-6(-3) \rightarrow 9+18 \rightarrow 27$
b) $f(t)=9-6 t \quad 11=9-6 t \quad 6 t=-2 \quad t=-\frac{1}{3}$
5. a) $f(-2)=3(-2)^{2}-7 \rightarrow 12-7 \rightarrow 5$
b) $f(a)=3 a^{2}-7 \quad 20=3 a^{2}-7 \quad 3 a^{2}=27$

$$
a^{2}=9 \quad a=3 \text { or } a=-3
$$

6. $\quad f\left(\frac{1}{2}\right)=\frac{4}{\left(\frac{1}{2}\right)^{2}} \rightarrow \frac{4}{\frac{1}{4}} \rightarrow 4 \div \frac{1}{4} \rightarrow 4 \times \frac{4}{1} \rightarrow 16$
7. a) $\quad f(x)=3^{x} \quad f(4)=3^{4} \quad \rightarrow 81$
b) $\sqrt{27}=3^{x},\left(3^{3}\right)^{\frac{1}{2}}=3^{x} \quad 3^{\frac{3}{2}}=3^{x} \quad \therefore x=\frac{3}{2}$
8. $\quad f(2)=\frac{3}{\sqrt{2}} \rightarrow \frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{3 \sqrt{2}}{2}$
9. $\quad f(12)=3 \sqrt{12} \rightarrow 3 \sqrt{4 \times 3} \rightarrow 3 \sqrt{4} \sqrt{3} \rightarrow 6 \sqrt{3}$

Quadratic Equations

1. $x^{2}-7 x=0 \rightarrow x(x-7)=0 \quad x=0, x=7$
2. $\quad 6 y-y^{2}=0 \quad y(6-y)=0 \quad y=0, \quad y=6$
3. $(2 x+1)(x-5)=0 \quad x=-\frac{1}{2}, x=5$
4. $(2 x-3)(x+5)=0 \quad x=\frac{3}{2}, x=-5$
5. $(2 x-3)(x+4)=0 \quad x=\frac{3}{2}, x=-4$
6. $(2 p-5)(p+2)=0 \quad p=\frac{5}{2}, x=-2$
7. $5 x+3=x^{2}+2 x-1 \rightarrow x^{2}-3 x-4=0$

$$
\rightarrow \quad(x+1)(x-4)=0 \quad \rightarrow \quad x=-1, x=4
$$

Solutions Algebra-1

Basic Algebraic operations (continued)
Quadratic Equations (continued)
8. Use formula $\mathrm{a}=2, \mathrm{~b}=-3, \mathrm{c}=-4: \mathrm{x}=2.4,-0.9$
9. Use formula $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-6: \mathrm{x}=1.6,-3.6$

Inequalities

1. $8-x>3(2 x+5) \rightarrow 8-x>6 x+15 \rightarrow x<-1$
2. $3 y<4-(y+2) \rightarrow 3 y<2-y \rightarrow y<\frac{1}{2}$
3. $3-x+6<2 x \rightarrow 9<3 x \rightarrow x>9$
4. $6 x-2<5-15 x \rightarrow 21 x<7 \rightarrow x<\frac{1}{3}$
5. $2+5 x \geq 8 x-16 \rightarrow 18 \geq 3 x \rightarrow x \leq 6$
6. $2-15 x+10 \geq 4-12 x \rightarrow 12-15 x \geq 4-12 x$
$\rightarrow 8 \geq 3 x \quad \rightarrow \quad x \leq \frac{8}{3} \quad x \leq 2 \frac{2}{3}$
$\mathrm{x}=1$ or 2 since x is a positive integer.
7. $\quad 3 x+1 \leq 5 x+3-2 \leq x$ i.e. $x \geq-2$
$5 x+3 \leq x+23 \quad 4 x \leq 20$ i.e. $x \leq 5$
Both are true, so $x=\{-2,-1,0,1,2,3,4,5\}$

Changing subject of formula

1. $5 Y=6 v-3 w \rightarrow 6 v=5 Y+3 w \rightarrow v=\frac{5 Y+3 w}{6}$
2. $3 P=m-s \quad \rightarrow \quad m=3 P+s$
3. $L-8=\frac{6}{Y} \rightarrow Y(L-8)=6 \quad Y=\frac{6}{L-8}$
4. $\quad d t=k-m \quad \rightarrow \quad k=d t+m$
5. $Q-p^{2}=3 T \rightarrow T=\frac{Q-p^{2}}{3}$
6. $M+3=R^{2} t \rightarrow \frac{M+3}{t}=R^{2} \rightarrow \sqrt{\frac{M+3}{t}}=R$
7. $A^{2}=4 b^{2}-c \rightarrow A^{2}+c=4 b^{2} \rightarrow b=\sqrt{\frac{A^{2}+c}{4}}$
8.

a) $Q-t=2 \sqrt{s} \rightarrow \frac{Q-t}{2}=\sqrt{s} \rightarrow\left(\frac{Q-t}{2}\right)^{2}=s$
b) $s=\left(\frac{3.5-2.2}{2}\right)^{2} \rightarrow\left(\frac{1.3}{2}\right)^{2} \rightarrow 0.65^{2} \rightarrow 0.4225$
9.
$F=f-\frac{f v}{s} \rightarrow \frac{f v}{s}=f-F \rightarrow f v=s(f-F) \rightarrow v=\frac{s(f-F)}{f}$

Algebraic Fractions

1. $\frac{1}{2 x}-\frac{1}{3 x} \rightarrow \frac{3}{6 x}-\frac{2}{6 x} \rightarrow \frac{1}{6 x}$
2. $\frac{3}{x}+\frac{2-x}{x^{2}} \rightarrow \frac{3 x}{x^{2}}-\frac{2-x}{x^{2}} \rightarrow \frac{4 x-2}{x^{2}}$
3. $\rightarrow \frac{5(x-2)}{x(x-2)}-\frac{3 x}{x(x-2)} \rightarrow \frac{2 x-10}{x(x-2)} \rightarrow \frac{2(x-5)}{x(x-2)}$

Fraction Equations

1. $\frac{2 x+1}{3}-\frac{x}{4}=2 \rightarrow 4(2 x+1)-3 x=24 \rightarrow x=4$
2. $\frac{x+4}{2}-\frac{2 x+1}{3}=1 \rightarrow 3(x+4)-2(2 x+1)=6 \rightarrow x=4$
3. $3 x-\frac{5 x+2}{2}=3 \rightarrow 6 x-5 x-2=6 \rightarrow x=8$
4. $\frac{x-3}{2}+\frac{2 x-1}{3}=4 \rightarrow 3(x-3)+2(2 x-1)=24 \rightarrow x=5$
5. $\frac{x-2}{3}-\frac{x}{2}=\frac{1}{4} \rightarrow 4(x-2)-6 x=3 \rightarrow x=-5 \frac{1}{2}$
6. $\frac{x}{2}-\frac{x+1}{3}=4 \rightarrow 3 x-2(x+1)=24 \rightarrow x=26$
7. $\frac{m}{3}=\frac{1-m}{5} \rightarrow 5 m=3-3 m \rightarrow m=\frac{3}{8}$

Indices

1. 9
2. y^{2}
3. $\mathrm{a}^{-4}+5 \mathrm{a}^{3}$
4. $2 y^{3}$
5. y^{3}
6. b
7. $\mathrm{b}+1$
8. $a^{\frac{3}{2}}+a^{-\frac{1}{2}}$

Surds

1. $5 \sqrt{ } 2$
2. $2 \sqrt{ } 6$
3. $\sqrt{ } 3$
4. $3 \sqrt{ } 2$
5. $10 \sqrt{ } 2$
6. $6 \sqrt{ } 2$
7. $2 \sqrt{ } 3-2$
8. $f(12)=3 \sqrt{12} \rightarrow 3 \sqrt{4 \times 3} \rightarrow 3 \sqrt{4} \sqrt{3} \rightarrow 6 \sqrt{3}$
9. $\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \rightarrow \frac{3 \sqrt{5}}{5}$
10. $\sqrt{\frac{3}{24}} \rightarrow \sqrt{\frac{1}{8}} \rightarrow \frac{1}{\sqrt{4 \times 2}} \rightarrow \frac{1}{2 \sqrt{2}} \rightarrow \frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{4}$
11. $f(2)=\frac{3}{\sqrt{2}} \rightarrow \frac{3 \sqrt{2}}{\sqrt{2} \sqrt{2}} \rightarrow \frac{3 \sqrt{2}}{2}$
12. $f\left(\frac{3}{2}\right)=4^{\frac{3}{2}} \rightarrow(\sqrt{4})^{3} \rightarrow 2^{3} \rightarrow 8$

Solutions - Data Handling

Probability \& Statistics

Simple Probability

1. a) $\mathrm{P}(7)=\frac{5}{50} \rightarrow \frac{1}{10}$
b) $\quad P($ Blue 7$)=\frac{1}{50}$
2. 12 face cards, $\mathrm{P}($ face card $)=\frac{12}{52} \rightarrow \frac{3}{13}$
3. a) $\mathrm{P}($ green pencil $)=\frac{11}{20}$
b) $\quad \mathrm{P}($ blue pencil $)=\frac{7}{19} \quad($ only 19 pencils left $)$
4. $\mathrm{P}($ green AND red $)=\frac{25}{50} \times \frac{10}{50} \rightarrow \frac{1}{2} \times \frac{1}{5} \rightarrow \frac{1}{10}$ (for independent events MULTIPLY probabilities).
5. a) $\mathrm{P}(\mathrm{W}$ or D$)=0.2+0.5=0.7$
(add probabilities for mutually exclusive events)
b) $\quad \mathrm{P}($ Lose $)=0.3$
6. a) $P($ miss $)=0.2 \quad(20 \%)$
b) $\mathrm{P}(3$ hits in a row $)=0.8 \times 0.8 \times 0.8=0.512$
c) $\mathrm{P}(\mathrm{H}, \mathrm{M}, \mathrm{M})=0.8 \times 0.2 \times 0.2=0.032$
7. a) $\mathrm{P}($ not defective $)=0.85 \quad(85 \%)$
b) $5000 \times 0.85=4250$ should not be defective.
8. a) $P(M, M, M)=1 / 2 \times 1 / 2 \times 1 / 2=\frac{1}{8}$
b) $\quad \mathrm{P}(3$ boys - first IS a boy $)=1 \times 1 / 2 \times 1 / 2=1 / 4$

Probability from relative Frequency

1. a) $\mathrm{P}(<3$ yrs old $)=\frac{310}{600} \rightarrow \frac{31}{60}$
b) $4200 \times \frac{10}{600} \rightarrow \frac{42000}{600} \rightarrow \frac{420}{6} \rightarrow 70$
2. a) $\mathrm{P}($ scenery $)=\frac{80}{500} \rightarrow \frac{8}{50} \rightarrow \frac{4}{25}$
b) $\mathrm{P}(25 \&$ facilities $)=\frac{23}{500}$
c) $\mathrm{P}($ not cost $)=\frac{215}{500} \rightarrow \frac{43}{100}$
3. a) $\mathrm{P}($ still water $)=\frac{35}{110} \rightarrow \frac{7}{22}$
b) $\mathrm{P}(<20 \&$ Fizzy $)=\frac{10}{110} \rightarrow \frac{1}{11}$
4. a) $\mathrm{P}($ new car $)=\frac{40}{120} \rightarrow \frac{1}{3}$
b) $\mathrm{P}(18-40 \&$ used car $)=\frac{30}{120} \rightarrow \frac{1}{4}$

Statistical Diagrams

1. 25% contain fewer than 50 matches.
(Lower quartile is 25%)
2. $A=25 \quad B=29 \quad C=43$

Range of men $=60-18=42$
Range of ladies $=21$
Low of Ladies $=22$, so $\mathbf{C}=21+22=\mathbf{4 3}$
Men's median $=44$, Ladies median $=44-15=29$
S.I.R of men $=(50-34) \div 2=16 \div 2=8$
S.I.R Ladies $=3 / 4$ of men's so it is 6

So Ladies $\mathrm{IQR}=6 \times 2=12$
Subtract 12 from UQ to get $37-12=25$.
3. Draw a boxplot for each one

Use Box plot (or back to back stem \& leaf)
$1^{\text {st }}$ Set:
$\mathrm{Lo}=11, \mathrm{Q}_{1}=25, \mathrm{Q}_{2}=34, \mathrm{Q}_{3}=46, \mathrm{Hi}=50$
$2^{\text {nd }}$ Set:
$\mathrm{Lo}=15, \mathrm{Q}_{1}=22, \mathrm{Q}_{2}=31, \mathrm{Q}_{3}=39, \mathrm{Hi}=46$

	1	1	\mid	
10	20	30	40	50

4. a) Draw box plots

	1	1	1		1
10	20	30	40	50	60

b) The semi-interquartile range of timberplan is much lower than that of Allwoods, hence they are more consistent in their deliveries.
5. Draw a Pie Chart

There are 30 pupils.
Each one can be represented by 12°
Walk $=156^{\circ}$, Bus $=108^{\circ}$, $\mathrm{Car}=72^{\circ}$, Cycle $=24^{\circ}$ (Check these total $\mathbf{3 6 0}{ }^{\circ}$).
Then draw a NEAT pie chart, and label it.
6. a) There are 50 scores, so the median lies between the $25^{\text {th }}$ and $26^{\text {th }}$ scores.
i.e. between 73 and 75. Median $=74$
b) $(\mathrm{UQ}-\mathrm{LQ}) \div 2 \mathrm{LQ}$ is $13^{\text {th }}$ item

UQ is $38^{\text {th }}$ item
So S.I.R. $=(83-69) \div 2=14 \div 2=7$
c) $\mathrm{Lo}=63, \mathrm{Hi}=98, \mathrm{Q}_{1}=69, \mathrm{Q}_{2}=74, \mathrm{Q}_{3}=83$
7. Put into order

13 items: Median is $7^{\text {th }}$ item $=\mathbf{1 6}$
$\mathrm{LQ}=9 \quad \mathrm{UQ}=21$
Transfer onto sketch.
$\begin{array}{lllll}6 & 9 & 16 & 21 & 28\end{array}$

Standard Deviation

1. Use formula $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Use 3 columns: $\mathrm{x}, \quad(x-\bar{x})(x-\bar{x})^{2}$
$\sum x=276$, mean $=276 \div 6=46$
$\sum(x-\bar{x})^{2}=84, \quad \mathrm{SD}=\sqrt{\frac{84}{5}}=4.098 \ldots$
Mean $=46 \mathrm{p} \quad$ Standard Deviation $=4.1 \mathrm{p}$
Sugar prices more consistent compared to milk or milk prices more variable than sugar prices.
2. Use formula $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Use 3 columns: $\mathrm{x}, \quad(x-\bar{x})(x-\bar{x})^{2}$
$\sum x=102$, mean $=102 \div 8=12.75$
$\sum(x-\bar{x})^{2}=111.5, \quad \mathrm{SD}=\sqrt{\frac{111.5}{7}}=3.991 \ldots$

A better formula to use is $s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$
to avoid a lot of decimal calculations
$\sum x=102, \quad \sum x^{2}=1412, \quad\left(\sum x\right)^{2}=10404$
This also gives $\mathrm{SD}=3.991$.
Mean $=12.75$ hrs Standard Deviation $=3.99$ hours
Alloa High School were more variable in the hours they spent in study time than Alloa Academy.
3. Use formula $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Use 3 columns: $\mathrm{x}, \quad(x-\bar{x})(x-\bar{x})^{2}$
$\sum x=750$, mean $=750 \div 5=£ 150$
$\sum(x-\bar{x})^{2}=15200, \quad \mathrm{SD}=\sqrt{\frac{15200}{4}}=£ 61.64$
Mean $=£ 150$ Standard Deviation $=£ 61.64$
4. A better formula to use is $s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$ to avoid a lot of decimal calculations

Mean $=84.33$ pence Standard Deviation $=1.28$ pence
The rural garages had a higher average price and the prices were more variable.
5. Use formula $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Use 3 columns: $\mathrm{x}, \quad(x-\bar{x})(x-\bar{x})^{2}$
$\sum x=36$, mean $=36 \div 6=6$
$\sum(x-\bar{x})^{2}=84, \quad \mathrm{SD}=\sqrt{\frac{80}{5}}=4$
Mean $=6 \quad$ Standard Deviation $=4$
6. Use formula $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Use 3 columns: $\mathrm{x}, \quad(x-\bar{x})(x-\bar{x})^{2}$
$\sum x=78$, mean $=78 \div 6=13$
$\sum(x-\bar{x})^{2}=76, \quad \mathrm{SD}=\sqrt{\frac{76}{5}}=3.898 \ldots$
Mean $=13$ Standard Deviation $=3.9$

Solutions

4. Area \& Volume

1. a) $V=\pi r^{2} h \rightarrow V=\pi \times 5^{2} \times 14=1099.55 \ldots$
$\mathrm{V}=1100$ ($3 \mathrm{~s} . \mathrm{f}$.) Note radius is 5 cm .
b) Cross section stays the same, height will change
$600=\pi \times 5^{2} \times h \rightarrow h=\frac{600}{25 \pi} \quad h=7.6394 \ldots$ depth of coffee $=7.6$ centimetres (2 s.f.)
2. Calculate volume of cylinder.
$V=\pi r^{2} h \rightarrow V=\pi \times 0.55^{2} \times 1.85=1.75811 . . \mathrm{m}^{3}$
This volume will have been in the top tank.
Cross section stays the same, height will change
$1.7581=3 \times 9 \times h \rightarrow h=\frac{1.7581}{27} \quad h=0.065114 \ldots \mathrm{~m}$
$\times 1000$ to change to $\mathrm{mm} \rightarrow 65.114 \ldots=65 \mathrm{~mm}$
3. Volume of prism $=$ Area cross section x length

Area of rectangle $=0.6 \times 0.25 \mathrm{~m}^{2}$
Area of semi-circle $=1 / 2 \pi(0.3)^{2} \quad$ (NB use radius)
Area of cross section $=0.6 \times 0.25+1 / 2 \pi(0.3)^{2}$
Area of cross section $=0.29137 \ldots$
Volume $=0.2913 \ldots \times 4=1.1654 \ldots=1.2 \mathrm{~m}^{3}(2 \mathrm{sf})$
4. Volume of prism $=$ Area cross section x length

Area of 2 rectangles $=2 \times 4.5 \times 2=18 \mathbf{m}^{2}$
Area of inner semi-circle $=1 / 2 \pi(2)^{2}$
Area of outer semi-circle $=1 / 2 \pi(4)^{2}$
Shaded area $=1 / 2 \pi(4)^{2}-1 / 2 \pi(2)^{2}=\mathbf{1 8 . 8 4 9 5} . . \mathbf{m}^{2}$
Area of cross section $=18+18.85=36.85 \mathrm{~m}^{2}$
Volume $=36.85 \times 0.8=29.55=29.6 \mathrm{~m}^{3}(1 \mathrm{dp})$
*****Misprint - should ask for new diameter
5. a) $\quad V=\pi r^{2} h \rightarrow V=\pi \times 3.25^{2} \times 15=497.746$..
$\mathrm{V}=497.75$ (2 dp .) Note radius is 3.25 cm .
b) Volume stays the same, height is reduced
$497.75=\pi \times r^{2} \times 12 \rightarrow r^{2}=\frac{497.75}{12 \pi} \quad r^{2}=13.203 \ldots$
radius $=3.663 \ldots$ hence diameter $=7.2672$.
new diameter $=7.3 \mathrm{~cm}$ ($1 \mathrm{~d} . \mathrm{p}$.)
6. Volume of prism $=$ Area cross section x length

Area of triangle $=1 / 2 \mathrm{ab} \sin \mathrm{C}$

$$
=1 / 2 \times 8 \times 14 \times \sin 100^{\circ}=55.14923 \ldots
$$

Volume $=55.14923$. x $5=275.746$.
Volume $=276 \mathrm{~cm}^{3}(2 \mathrm{sf})$
7. Volume of space $=$ Vol. Cylinder - Vol cuboid Calculate volume of cylinder.
$V=\pi r^{2} h \rightarrow V=\pi \times 6^{2} \times 20=720 \pi \mathrm{~cm}^{3}$
Cross section of cuboid is a square
Diagonal $=12 \mathrm{~cm}$, Area $=1 / 2$ diag x diag
Area $=1 / 2 \times 12 \times 12=72 \mathrm{~cm}^{2}$
Or use Pythagoras
Side of square $=\sqrt{6^{2}+6^{2}}=\sqrt{72} \mathrm{~cm}$
Area of square $-=\sqrt{72} \times \sqrt{72}=72 \mathrm{~cm}^{2}$
Volume of cuboid $=72 \times 20=1440$
Hence vol of space $=720 \pi-1440$

$$
=720(\pi-2)
$$

8. a) Dimensions of packet are <1 litre Vol $=6 \times 10 \times 15=900 \mathrm{~cm}^{3}<1$ litre
b) Volume of cylinder

$$
V=\pi r^{2} h \rightarrow 900=\pi \times 6^{2} \times h \rightarrow h=\frac{900}{\pi \times 6^{2}}
$$

$$
\mathrm{h}=7.9577 \ldots 8.0 \mathrm{~cm}(1 \mathrm{~d} . \mathrm{p} .)
$$

9. Cross section is rectangle + trapezium or 2 rectangles and a triangle

NB answer is in cubic metres.
 So work in metres

Area of cross section :
Area Trapezium

$$
=1 / 2(0.8+0.4) \times 0.35=0.21 \mathrm{~m}^{2}
$$

Area rectangle $=0.3 \times 0.8=0.24 \mathrm{~m}^{2}$
Cross section area $=0.21+0.24=0.45 \mathrm{~m}^{2}$
Or
Area of rectangles $=0.3 \times 0.8+0.35 \times 0.4=0.38$
Area of triangle $=1 / 2 \times 0.4 \times 0.35=0.07$
Cross section area $=0.38+0.07=0.45 \mathrm{~m}^{2}$
Volume $=0.45 \times 1=0.45 \mathrm{~m}^{3}$
10. a) $x+x+1.5=3$, so $2 x=1.5, x=0.75 m$
b) Cross section area: 2 triangles +2 rectangles

Area Rect: $3 \times 0.6+1.5 \times 0.8=3 \mathrm{~m}^{2}$
Area Triangles $=2 \times 1 / 2 \times 0.75 \times 0.8=0.6 \mathrm{~m}^{2}$
Cross section area $=3+0.6=3.6 \mathrm{~m}^{2}$
Volume $=3.6 \times 2=7.2$ cubic metres.

Solutions

4. Area \& Volume
5. Find area of cross section

Rectangle + semi circle
Area Rectangle $=7 \times 5=35 \mathrm{~m}^{2}$
Area semi-circle $=1 / 2 \pi 3.5^{2}=19.24 \mathrm{~m}^{2}$
Area of cross section $=35+19.24=54.24 \mathrm{~m}^{2}$
Volume of barn $=12 \times 54.24=650.88 \ldots \mathrm{~m}^{3}$ $=650 \mathrm{~m}^{3}$ (2 sig. figs.)
12. Volume of prism $=$ Area cross section x length

Area of triangle $=1 / 2$ base x height $($ base $=6.5-0.5)$ $=1 / 2 \times 6 \times 2=6 \mathrm{~m}^{2}$
Area of rectangle $=2 \times 0.5=1 \mathrm{~m}^{2}$
Area of cross-section $=6+1=7 \mathrm{~m}^{2}$
Volume $=7 \times 3=21 \mathrm{~m}^{3}$
13. Area of existing cross section:

Area of Rectangle $=14 \times 5=70 \mathrm{~m}^{2}$
Area of triangles $=2 \times 1 / 2 \times 10 \times 5=50 \mathrm{~m}^{2}$
Area of cross section $=120 \mathrm{~m}^{2}$

Area of new cross section:

Area of Rectangle $=22 \times 5=110 \mathrm{~m}^{2}$
Area of triangles $=2 \times 1 / 2 \times 10 \times 5=50 \mathrm{~m}^{2}$
Area of cross section $=160 \mathrm{~m}^{2}$
Area of cross section to be removed:

$$
=160-120=140 \mathrm{~m}^{2}
$$

Volume to be removed $=\mathrm{Ax} l$

$$
=140 \times 10000=1400000 \mathrm{~m}^{3}(\text { change } \mathrm{km} \text { to } \mathrm{m})
$$

Cost at $£ 4$ per $\mathrm{m}^{3}=4 \times 1400000=£ 5,600,000$
14. Area of cross section:

Area of Rectangles:
$=1 \times 2.5+1 \times 1.8$
$=4.3 \mathrm{~m}^{2}$

Area of Triangle
$=1 / 2 \times 0.7 \times 1=0.35 \mathrm{~m}^{2}$
Cross section area $=4.3+0.35=4.65 \mathrm{~m}^{2}$
Volume $=\mathrm{Ax} l$
$=4.65 \times 2=9.3 \mathrm{~m}^{3}$

Solutions

5 Similar Shapes

1. Linear scale factor $=\frac{9}{6} \rightarrow \frac{3}{2}$

Volume: $=30 \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}=101.25 \mathrm{mls}$
2. Linear scale factor $=\frac{40}{50} \rightarrow \frac{4}{5}$

Area: $=3.27 \times \frac{4}{5} \times \frac{4}{5}=2.0928 \mathrm{~m}^{2}=2.09 \mathrm{~m}^{2}$
3. Linear scale factor $=\frac{27}{18} \rightarrow \frac{3}{2}$

Cost: $=80 \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}=£ 2.70$
4. Linear scale factor $=\frac{30}{20} \rightarrow \frac{3}{2}$

Volume: $=0.8 \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}=2.7$ litres
5. Linear scale factor $=\frac{24}{30} \rightarrow \frac{4}{5}$

Volume: $=1.2 \times \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=0.6144$ litres
Volume $=0.61$ litres (2 sig figs)
6. Linear scale factor $=\frac{200}{160} \rightarrow \frac{5}{4}$

Cost: $=£ 1.12 \times \frac{5}{4} \times \frac{5}{4} \times \frac{5}{4}=£ 2.1875$
Cost $=£ 2.19$

Similar Triangles

1. Due to parallel line, Triangles are similar

$$
\frac{B P}{6}=\frac{1}{1.5} \rightarrow B P=\frac{6}{1.5}=4
$$

Hence AP = 6-4=2 metres
In Figure 2 the triangles are similar:
Let B be h metres above the ground
$\frac{h}{1}=\frac{6}{A P} \quad$ but $A P=2 \frac{h}{1}=\frac{6}{2} \quad h=3$ metres
2. a) Use converse of Pythagoras in $\triangle \mathrm{ABX}$
$\mathrm{AB}^{2}=300^{2}=90000$
$A X^{2}+B X^{2}=180^{2}+240^{2}=90000$
Since $\mathrm{AB}^{2}=A X^{2}+B X^{2}$ then $\angle A X B$ is 90°
So roads $A X$ and $B X$ are at right angles to one another
b) Shortest route is $\mathrm{AX} \rightarrow \mathrm{XC} \rightarrow \mathrm{CD}$

Triangles ABX and XCD are similar $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{C}$ (alternate angles) So,

$$
\frac{X C}{240}=\frac{750}{300} \rightarrow X C=\frac{750 \times 240}{300}=600
$$

Shortest distance $=180+600+750 \mathrm{~m}$

$$
=1530 \text { metres }=1.53 \mathrm{~km}
$$

3. $\mathrm{AC}=24 \mathrm{~cm}$ (diameter) and $\angle \mathrm{ACD}=58^{\circ}$

Using SOH-CAH-TOA,
$\sin 58=\frac{A D}{24} \rightarrow A D=24 \sin 58=20.35 \mathrm{~cm}$
$\Delta \mathrm{AEO}$ and $\triangle \mathrm{ADC}$ are similar (parallel line)
$\frac{A E}{20.35}=\frac{12}{24} \rightarrow A E=\frac{1}{2} \times 20.35=10.175$
Hence $E D=20.35-10.175=10.175 \mathrm{~cm}$
4. $\angle \mathrm{B}=80^{\circ}$ (angle sum triangle ABC)
$\angle \mathrm{E}=65^{\circ}$ (angle sum triangle DEF)
Triangles are equiangular, hence similar.
$\frac{D E}{4.6}=\frac{10.5}{4.2} \rightarrow D E=\frac{10.5 \times 4.6}{4.2}=11.5$
Hence DE $=11.5$ centimetres
5. $\frac{B E}{6}=\frac{10}{12} \rightarrow B E=\frac{10 \times 6}{12}=5 \mathrm{cms}$
6. $\frac{C D}{8.4}=\frac{3}{4.5} \rightarrow C D=\frac{3 \times 8.4}{4.5}=5.6 \mathrm{~m}$
7.

The triangles are similar 22.4 (parallel line).

$$
\frac{d}{75}=\frac{22.4}{2.8} \rightarrow d=\frac{22.4 \times 75}{2.8}=600 \mathrm{cms}
$$

Hence $y=600-75=525$ centimetres
So, distance from top of 10 p coin to top of person's head is 525 centimetres.

Solutions

6 Pythagoras

1. Let mid-point of AB be M and radius OB be r
$\mathrm{MB}=3 \mathrm{~m}(1 / 2$ of width $)$
$\mathrm{OP}=r \quad$ (radius)
$\mathrm{OM}=r-2$

By Pythagoras: $r^{2}=(r-2)^{2}+3^{2}$
So, $r^{2}=r^{2}-4 r+4+9$
$4 \mathrm{r}=13, \quad \mathrm{r}=3.25$ metres.
2. a) Draw triangle as shown
$\sin 55^{\circ}=\frac{1.25}{A C}$

$A C=\frac{1.25}{\sin 55^{\circ}}=1.5259 \ldots$ hence $\mathrm{AC}=1.53 \mathrm{~m}(3 \mathrm{sf})$
b) Find perimeter of table
radius of arc $=1.53 \mathrm{~m}$ (diameter $=3.06 \mathrm{~m}$)
length of curved end $=\frac{110}{360} \times \pi \times 3.06=2.94 \mathrm{~m}$
length of straight section $=5 \mathrm{~m}$
Perimeter $=2.94+2.94+5+5=15.88 \mathrm{~m}$

$$
=1588 \mathrm{~cm}
$$

No. of people $=1588 \div 75=21.17$.. So 21 people
3. a) Find MB and then double it.
$\mathrm{OA}=2.1 \mathrm{~m}$ (radius)
$\mathrm{OM}=3.4-2.1 \mathrm{~m}$

$$
=1.3 \mathrm{~m}
$$

By Pythagoras
$2.1^{2}=1.3^{2}+d^{2}$

Hence $2.1^{2}-1.3^{2}=d^{2}$ so $d=1.649$..
Hence $x=\mathrm{d} \times 2=3.298 \ldots=3.3 \mathrm{~m}$ (2 s.f.)
b) By symmetry, the oil width will be the same, when it is below the centre by a distance OM.
i.e. $2.1-1.3=0.8$ metres.
4. a) $\mathrm{CQ}=$ radius $=10 \mathrm{~cm}$

By Pythagoras: $10^{2}=x^{2}+8^{2}$ hence $10^{2}-8^{2}=x^{2}$ and so, $x=6 \mathrm{~cm}$
b) \quad Height of figure $=\mathrm{Ht}$. of Triangle $+x+10$

Let height of triangle be h, using symmetry:
$h^{2}+8^{2}=17^{2}$
So $h=15 \mathrm{~cm}$
Height of figure $=15+6+10 \mathrm{~cm}=\mathbf{3 1} \mathbf{~ c m s}$
5. a) Use converse of Pythagroas
$\mathrm{AB}^{2}=90000$
$A X^{2}+B X^{2}=180^{2}+240^{2}=90000$
Since $\mathrm{AB}^{2}=A X^{2}+\mathrm{BX}^{2}$ then AXB is 90°
(converse of Pythagoras)
So AX and BX are at right angles to each other.
b) Shortest route is $\mathrm{AX}, \mathrm{XC}, \mathrm{CD}$

Need to find XC
Triangles ABX and CXD are similar
(using alternate angles on the parallel lines AB, CD)
$\frac{X C}{240}=\frac{750}{300}$ hence $X C=600 \mathrm{~m}$
Length of shortest route $=180+600+750=1530$ metres.
6. Use converse of Pythagoras

$$
\begin{aligned}
& d^{2}=37.3^{2}=1391.29 \\
& 22.5^{2}+30^{2}=506.25+900=1406.25
\end{aligned}
$$

Since $d^{2} \neq 22.5^{2}+30^{2}$ then AXB is NOT 90°
(converse of Pythagoras)
So No, the frame is NOT rectangular.
7. Find length of BD : $\mathrm{OD}=$ radius $=60 \mathrm{~cm}$ BOD is a right angled triangle
Use Pythagoras: $B D^{2}=60^{2}+60^{2}$ $\mathrm{BD}=84.852 \ldots \mathrm{~cm}=84.9 \mathrm{~cm}(1 \mathrm{dp})$

Perimeter of circular part of table $=\frac{270}{360} \times \pi \times 120$

$$
=282.7433 . . \mathrm{cm}=282.7 \mathrm{~cm}(1 \mathrm{dp})
$$

Perimeter of table $=84.9+282.7=367.6 \mathrm{~cm}$
8. Area of sector $=\frac{280}{360} \times \pi \times 50=122.17 . .=122.2 \mathrm{~cm}^{2}$

To find l, we need to find OP and then add to the radius of 25 cm
Angle AOB $=360-280=80^{\circ}$
Angle AOP $=40^{\circ}$
Using SOH-CAH-TOA

$\cos 40=\frac{O P}{25}$ hence $\mathrm{OP}=19.151 . .=19.2 \mathrm{~cm}$
so \min. length l reqd. $=19.2+25=44.2 \mathrm{cms}$.
9. If they are to meet then this will be the angle in a semi-circle which should be 90°
Use converse of Pythagoras
$4.1^{2}=16.81$
$2.6^{2}+3.1^{2}=16.37$
Since $4.1^{2} \neq 2.6^{2}+3.1^{2}$ then angle at top of bridge is NOT 90° (converse of Pythagoras).
So beams will NOT fit this archway.

Solutions

6 Pythagoras (continued)
10. a) Use SOH-CAH-TOA
$\sin 65=\frac{2.25}{O B}$

b) Length of border $=$ perimeter.
radius of curved edge $=2 \times 2.48=4.96 \mathrm{~m}$
Curved length $=\frac{130}{360} \times \pi \times 4.96=5.626 . . \mathrm{m}$
Length of border $=8.3+8.3+4.5+5.6=26.7 \mathrm{~m}$
11. Height of tunnel
$=$ distance O to the floor +O to top (the radius).
Let distance O to floor be d
Use Pythagoras and symmetry:
$2.5^{2}=d^{2}+1.2^{2}$ hence $d=2.193 \ldots$
Hence height of tunnel $=2.19+2.5=4.7 \mathrm{~m}(2 \mathrm{sf})$
6. First draw the diagram

Mark on information given.
Find d.
$17^{2}=d^{2}+8^{2}$
$\mathrm{d}=15 \mathrm{~cm}$

Hence each side of triangle $=30 \mathrm{~cm}$

Since equilateral, perimeter $=3 \times 30=90 \mathrm{cms}$.
10. Converse of Pythagoras
$14.5^{2}=210.25$
$11.6^{2}+8.7^{2}=210.25$
Since $14.5^{2}=11.6^{2}+8.7^{2}$ then
angle is a perfect right angle (converse of Pythagoras),
so yes, it will be acceptable.
11.
$\mathrm{OT}=170$ (radius)
$\mathrm{OM}=170-28=142$
Use Pythagoras
$170^{2}=A M^{2}+142^{2}$

$\mathrm{AM}=93.466 \ldots$.

Hence AB
$=2 \times 93.466$.
$=187 \mathrm{~m}(3 \mathrm{sf})$
12. Converse of Pythagoras
$\mathrm{AC}=6-(2+2.5)=1.5 \mathrm{~m}$
$\mathrm{AB}^{2}=2.5^{2}=6.25$
$\mathrm{AC}^{2}+\mathrm{CB}^{2}=2^{2}+1.5^{2}=6.25$
Since $\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$ then angle $\mathrm{ACB}=90^{\circ}$
(converse of Pythagoras).
13. Height of stacked pipes $=$ radius + radius

+ distance between centres of two layers

Triangle is equilateral, by symmetry

and sides are all 2 m
By Pythagoras: $2^{2}=1^{2}+d^{2}$ so $d=1.732 \ldots \mathrm{~m}$

Hence height of pipe stack $=1+1+1.73=\mathbf{3 . 7 3} \mathbf{~ m}$
12. a) If $\mathrm{AB}=2$ then $\mathrm{BC}=2$ (it is a square)

By Pythagoras: $A C^{2}=2^{2}+2^{2}$ so $A C=\sqrt{8} \rightarrow 2 \sqrt{2}$
b) In any square of side a.

Diagonal $=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}$
Ratio of side to diagonal is: $a: a \sqrt{ } 2$ which is $1: \sqrt{ } 2$
13. Since angle $\mathrm{ADC}=90^{\circ}$

By Pythagoras
$\mathrm{AC}^{2}=108^{2}+31.5^{2}$
$=12656.25$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=90^{2}+67.5^{2}$
$=12656.25$
Hence angle $\mathrm{ABC}=90^{\circ}$
(converse of Pythagoras)

14. a) If $\mathrm{d}=2$, then using Pythagoras
$R^{2}=6^{2}+(R-2)^{2} \quad R^{2}=36+R^{2}-4 R+4$
Hence $4 \mathrm{R}=40$ and so $\mathrm{R}=10$
b) \quad Volume $=$ Volume of Cap + cylinder

Cap: $V=\frac{1}{3} \pi(2)^{2}(3 \times 10-2)=\frac{112}{3} \pi$
Cylinder: $V=\pi \times \frac{5}{2} \times \frac{5}{2} \times \frac{8}{1}=50 \pi$
Total volume $=\frac{150}{3} \pi+\frac{112}{3} \pi=\frac{262 \pi}{3}$

Solutions

7 The Circle

1. Area of sector $=\frac{40}{360} \times \pi \times 15^{2}=78.5 \mathrm{~cm}^{2}(3 \mathrm{sf})$
2. If they are to meet then this will be the angle in a semi-circle which should be 90°
Use converse of Pythagoras
$4.1^{2}=16.81$
$2.6^{2}+3.1^{2}=16.37$
Since $4.1^{2} \neq 2.6^{2}+3.1^{2}$ then angle at top of bridge is NOT 90° (converse of Pythagoras).
So beams will NOT fit this archway.
3. $\angle \mathrm{CPB}=90^{\circ}$ (tangent)
$\angle \mathrm{PCB}=180-a$
(angle sum triangle)
$\angle \mathrm{MCN}=\angle \mathrm{PCB}$
$=180-a$
(vertically opposite)
$\angle \mathrm{CMN}=x^{\circ}$

(isosceles triangle)
So, $x+x+180-a=180$ (angle sum of triangle)
Re-arrange to give: $2 x=a \quad$ So, $\quad x=1 / 2 a$
4. \quad Area of sector $=\frac{50}{360} \times \pi \times 1.2^{2}=0.63 \mathrm{~m}^{2}(2 \mathrm{sf})$
5. Let angle of sector $=\theta \quad$ So, $200=\frac{\theta}{360} \times \pi \times 15^{2}$

Re-arrange to get $\quad \theta=\frac{200 \times 360}{\pi \times 15^{2}}=\frac{320}{\pi}$
Length of arc: $\frac{\theta}{360} \times \pi \times 30=\frac{320}{\pi} \times \frac{\pi \times 30}{360}=26.7 \mathrm{~m}$

Alternatively, $\quad \frac{\text { arc length }}{\text { circumference }}=\frac{\text { area of sector }}{\text { area of circle }}$
So, $\quad \frac{\text { arc length }}{\pi \times 30}=\frac{200}{\pi \times 15 \times 15}, \quad$ arc length $=\frac{200 \times \pi \times 30}{\pi \times 15 \times 15}$ arc length $=26.7 \mathrm{~m}$
6. Area of sector $=\frac{105}{360} \times \pi \times 40^{2}=1466 \mathrm{~cm}^{2}(4 \mathrm{sf})$

Area of screen $($ trapezium $)=1 / 2(120+80) \times 60$

$$
=6000 \mathrm{~cm}^{2}
$$

Area not cleaned $=6000-1466=4534 \mathrm{~cm}^{2}$
7.

$\angle \mathrm{CYX}=90^{\circ}$ (tangent), so $\angle \mathrm{YCX}=70^{\circ}$ (angle sum Δ)
$\angle \mathrm{YRP}=70^{\circ}$ (corresponding angle)
So, shaded angle
$\angle \mathrm{CRP}=110^{\circ}$ (supplementary angle - adds up to 180°)
8. Find length of BD : $\mathrm{OD}=$ radius $=60 \mathrm{~cm}$

BOD is a right angled triangle
Use Pythagoras: $B D^{2}=60^{2}+60^{2}$
$\mathrm{BD}=84.852 \ldots \mathrm{~cm}=84.9 \mathrm{~cm}(1 \mathrm{dp})$
Perimeter of circular part of table $=\frac{270}{360} \times \pi \times 120$

$$
=282.7433 . . \mathrm{cm}=282.7 \mathrm{~cm}(1 \mathrm{dp})
$$

Perimeter of table $=84.9+282.7=367.6 \mathrm{~cm}$
9. a)
a) Use SOH-CAH-TOA
$\sin 65=\frac{2.25}{O B}$
hence $\mathrm{OB}=2.482 . .=2.48 \mathrm{~m}$
b) Length of border $=$ perimeter.

radius of curved edge $=2 \times 2.48=4.96 \mathrm{~m}$
Curved length $=\frac{130}{360} \times \pi \times 4.96=5.626 . . \mathrm{m}$
Length of border $=8.3+8.3+4.5+5.6=26.7 \mathrm{~m}$
10. Arc length $=\frac{160}{360} \times \pi \times 60=83.8 \mathrm{~cm}(3 \mathrm{sf})$
11. First draw the diagram

Mark on information given.
Find d.
$17^{2}=d^{2}+8^{2}$
$\mathrm{d}=15 \mathrm{~cm}$
Hence each side
of triangle $=30 \mathrm{~cm}$

Since equilateral, perimeter $=3 \times 30=90 \mathrm{cms}$.
12. Let angle of arc $=\theta$

Hence, $\frac{\theta}{360}=\frac{7}{\pi \times 12}$, so $\theta=66.8^{\circ}$
Angle through which the rod swings is 67°

Solutions

7 The Circle (continued)
13. Area of sector $=\frac{240}{360} \times \pi \times 3^{2}=18.8 \mathrm{~m}^{2}(3 \mathrm{sf})$
14. Length of waist $=\frac{140}{360} \times \pi \times 56=68.4 \mathrm{~cm}(3 \mathrm{sf})$

NB. the other dimension is not relevant to the question.
15. Area of sector $=\frac{280}{360} \times \pi \times 50=122.17 . .=122.2 \mathrm{~cm}^{2}$

To find l, we need to find OP and then add to the radius of 25 cm

Angle $\mathrm{AOB}=360-280=80^{\circ}$
Angle AOP $=40^{\circ}$
Using SOH-CAH-TOA

$\cos 40=\frac{O P}{25}$ hence $\mathrm{OP}=19.151 . .=19.2 \mathrm{~cm}$
16. a) Draw triangle as shown
$\sin 55^{\circ}=\frac{1.25}{A C}$

$A C=\frac{1.25}{\sin 55^{\circ}}=1.5259 \ldots$ hence $\mathrm{AC}=1.53 \mathrm{~m}(3 \mathrm{sf})$
b) Find perimeter of table
radius of arc $=1.53 \mathrm{~m}$ (diameter $=3.06 \mathrm{~m})$
length of curved end $=\frac{110}{360} \times \pi \times 3.06=2.94 \mathrm{~m}$
length of straight section $=5 \mathrm{~m}$
Perimeter $=2.94+2.94+5+5=15.88 \mathrm{~m}$ $=1588 \mathrm{~cm}$
No. of people $=1588 \div 75=21.17$.. So 21 people

Solutions

8 Trigonometry - SOH-CAH-TOA

1. Find SV and then SW
$\sin 34=\frac{S V}{13.1} \quad$ hence $S V=7.33 \mathrm{cms}$
$\cos 25=\frac{S W}{S V}=\frac{S W}{7.33}$ so $\mathrm{SW}=6.6 \mathrm{cms}(2 \mathrm{sf})$
2. Let Length of ladder $=l$
$\sin 60=\frac{14}{l} \quad l=16.17 \mathrm{~m}$
Look at second triangle, cat is 15 m up the tree.
Let angle of ladder be θ
$\sin \theta=\frac{15}{16.17} \quad \sin \theta=0.9276 \quad \theta=68^{\circ}$
3. Let angle of ramp be θ
$\tan \theta=\frac{0.5}{1.9} \rightarrow \theta=\tan ^{-1}\left(\frac{0.5}{1.9}\right) \theta=14.7^{\circ}$
Yes, the ramp satisfies local building regulations.
4. a) B to $\mathrm{C}: \tan 70=\frac{13.5}{B C} \quad \mathrm{BC}=4.9 \mathrm{~m}$
b) A to B is $\mathrm{AC}-\mathrm{BC}$
$\tan 40=\frac{13.5}{A C} \quad$ AC $=16.1 \mathrm{~m}$
Hence $A B$ is: $16.1-4.9=11.2$ metres.
5. a) Let diagonal of courtyard $=d$ metres
$\tan 8^{\circ}=\frac{4.6}{d} \rightarrow d=\frac{4.6}{\tan 8^{\circ}}=32.7$ metres
b) Let length of side of courtyard $=l$ metres.

Then by Pythagoras:
$l^{2}+l^{2}=32.7^{2} \quad \rightarrow \quad 2 l^{2}=1069.29$
$l=\sqrt{534.65}=23.12 \ldots$ metres
This is approx 23 metres.
6. See Pythagoras Section 6

For the solution - misplaced in wrong section.
7.
$\tan \theta=\frac{1.5}{3}$
$\theta=\tan ^{-1} \frac{1.5}{3}$

$\theta=26.565 . .{ }^{\circ}$
Yes Planning permission should be granted, since angle is between 23° and 27°
8.

$\tan 3^{\circ}=\frac{h}{50}$ hence $\mathrm{h}=50 \tan 3^{\circ}=2.62$ metres
Hence $d=1+2.62=3.62$
Hence depth of pool $=3.6$ metres (2 sf)

Solutions

9 Trigonometry - Sine, Cosine Rule

1. Draw a diagram, and mark in given bearings which show that $\angle \mathrm{AHB}=68$

Look at diagram - SAS - Cosine Rule
$d^{2}=30^{2}+50^{2}-2 \times 30 \times 50 \times \cos 68^{\circ}$
$d^{2}=3400-1123.819 \ldots=2276.181 \ldots$
$\mathrm{d}=47.70933 \ldots$.
yachts are 47.7 km apart when they stopped.
2. Area of triangle $=1 / 2 a b \sin C$

Transpose letters.
$38=1 / 2 \times 9 \times 14 \times \sin B \quad 38=63 \sin B$
Re-arrange: $\sin B=\frac{38}{63} \quad B=\sin ^{-1}(38 \div 63)$
Hence $B=37.096 \ldots . \quad B=37^{\circ}$
3.

$\mathrm{PD}=13 \times 0.75=9.75$ miles
$\mathrm{PE}=15 \times 0.75=11.25$ miles
$\angle \mathrm{DPE}=104^{\circ}-57^{\circ}=47^{\circ}$
Use cosine rule
$D E^{2}=9.75^{2}+11.25^{2}-2 \times 9.75 \times 11.25 \times \cos 47^{\circ}$
$\mathrm{DE}=8.485 \ldots \quad$ Boat D will have to travel 8 miles
4. \quad Area $=1 / 2 a b \sin C$

So, $36=1 / 2 \times 6 \times 16 \times \sin R$
Hence $\sin R=\frac{36}{48}=\frac{3}{4}$
5. Use cosine Rule
$\cos A=\frac{4^{2}+5^{2}-6^{2}}{2 \times 4 \times 5}=\frac{5}{40}=\frac{1}{8}$
6.

ASA - use Sine Rule to find either side ST or SV The use SOH-CAH-TOA to find perpendicular height.
First find angle at $\mathrm{S}=180^{\circ}-\left(35^{\circ}+40^{\circ}\right) \quad \mathrm{S}$ is 105°

$$
\frac{\mathrm{ST}}{\sin 40}=\frac{500}{\sin 105}
$$

$\mathrm{ST}=\frac{500 \sin 40}{\sin 105} \Rightarrow \mathrm{ST}=332.731 \ldots$

7. Basically same as previous question
$\angle \mathrm{PRQ}=95^{\circ}$ Find RQ using sine rule
$\frac{R Q}{\sin 50}=\frac{80}{\sin 95} \quad \mathrm{RQ}=61.5$ metres
Now use SOH-CAH-TOA to find distance
Let distance between river and path be d metres.
$\sin 35=\frac{d}{61.5}$ hence, $\mathrm{d}=35.3$ metres
8. Draw diagram

Use sine rule to calculate angle at P .
$\frac{\sin P}{250}=\frac{\sin 130}{410}$
Hence $\sin P=0.4671$..
So, $\angle \mathrm{P}=27.8^{\circ}$
$\angle \mathrm{KWP}=180-(27.8+130)=22.2^{\circ}$

Hence external angle $=157.8^{\circ}$
Bearing of Possum from Wallaby $=157.8^{\circ}$

Solutions

9 Trigonometry - Sine, Cosine Rule (continued)
9. Draw a larger diagram of required triangles
a) Use cosine rule: (let obtuse angle $=\theta$)
$\cos \theta=\frac{14^{2}+12^{2}-21^{2}}{2 \times 14 \times 12}=-\frac{101}{336}$
Hence acute $\theta=72.5^{\circ}$,
so obtuse angle $=180-72.5=107.5^{\circ}$
b) Use SOH-CAH-TOA

Length of leg $=70 \mathrm{cms}$
Let height of table $=\mathrm{hcms}$.
$\sin 72.5=\frac{h}{70}$
hence $h=66.760 \ldots \mathrm{cms}$
height of table $=66.8 \mathrm{cms}$.
10. This is exactly the same as Qu. 6

Height of $\mathrm{B}=112.3$ metres
11. Use cosine Rule:
$P R^{2}=101^{2}+98^{2}-2 \times 101 \times 98 \times \cos 57^{\circ}$
$\mathrm{PR}=94.99 \ldots=95 \mathrm{cms}$.
12. $14=\frac{1}{2} \times 6 \times 7 \times \sin A$
$\sin A=\frac{14}{21}=\frac{2}{3} \quad$ acute $\mathrm{A}=41.8^{\circ}$
Using ASTC, the sine is positive in $2^{\text {nd }}$ quadrant.
Hence there is an angle $180-41.8=138.2^{\circ}$
Angles are: 42° and 138°
13. $\angle \mathrm{ABP}=30^{\circ}$ (alternate angle)

Hence,
$\angle \mathrm{ABC}=55^{\circ}$

Also
$\angle \mathrm{ACB}=50^{\circ}$
(angle sum triangle)

Use Sine Rule

$\frac{B C}{\sin 75}=\frac{8}{\sin 50}$ hence $\mathrm{BC}=10.087 \ldots$
Distance between B and C $=10.1 \mathrm{~km}(3 \mathrm{sf})$
14. Area of triangle $=1 / 2 a b \sin C$
$3^{\text {rd }}$ angle of triangle $=65^{\circ}$
Area $=1 / 2 \times 7 \times 11 \times \sin 65^{\circ}=34.9 \mathrm{~cm}^{2}$
15. a) $\angle \mathrm{RB}$ South $=120^{\circ}$ (alternate angles) \angle YB South $=40^{\circ}\left(\right.$ since North B South $\left.=180^{\circ}\right)$

Hence, $\angle \mathrm{RBY}=120^{\circ}-40^{\circ}=80^{\circ}$
b) Use cosine rule for RY
$R Y^{2}=350^{2}+170^{2}-2 \times 350 \times 170 \times \cos 80^{\circ}$
$R Y=361.6 \mathrm{~km}$.
The people on the boat will be rescued first.
16. $\angle \mathrm{GBD}=125^{\circ}-50^{\circ}=65^{\circ}$

Use cosine rule to calculate d
$d^{2}=35^{2}+20^{2}-2 \times 35 \times 20 \times \cos 65^{\circ}$

Hence d=32.145...

Distance between Delta and Gamma is 32 km .

17. Find $3^{\text {rd }}$ angle in triangle $=114^{\circ}$

Let longer sloping edge (opp. 42°) be d metres
Use sine rule:
$\frac{d}{\sin 42}=\frac{12.8}{\sin 114} \quad d=9.375 \ldots$
Length of longer sloping edge $=9.4$ metres
18. Use cosine Rule
$B C^{2}=420^{2}+500^{2}-2 \times 420 \times 500 \times \cos 52^{\circ}$
$\mathrm{BC}=409.66 \ldots$
Hence BC $=410$ metres (3 sf)
19. This is exactly the same as Qu. 6

Height of aeroplane $=16.6$ metres
20. Area $\triangle \mathrm{PQS}=1 / 2 \times 62 \times 87 \times \sin 109^{\circ}=2550 \mathrm{~m}^{2}$

Area Δ QSR $=1 / 2 \times 100 \times 103 \times \sin 74^{\circ}=4951 \mathrm{~m}^{2}$
Hence Area of plot of ground $=7500 \mathrm{~m}^{2}(3 \mathrm{sf})$
21. Similar to Qu .13 . Use parallel lines etc. to find angles.
$\angle \mathrm{GAE}=52^{\circ}-36^{\circ}=16^{\circ}$
Use cosine Rule
$G E^{2}=200^{2}+160^{2}-2 \times 200 \times 160 \times \cos 16^{\circ}$
Distance between airports $=64 \mathrm{~km}(2 \mathrm{sf})$

Solutions

9 Trigonometry - Sine, Cosine Rule (continued)
22. Area of triangle $=1 / 2 \times 7.2 \times 10.3 \times \sin 34^{\circ}$

$$
=20.73 \mathrm{~m}^{2}
$$

Area of rectangle $=8.6 \times 10.3=88.58 \mathrm{~m}^{2}$
Total area $=20.73+88.58=109.31 \mathrm{~m}^{2}$
12 litres will cover $12 \times 8=96 \mathrm{~m}^{2}$
No, this is not enough paint.
23. Use cosine Rule
$P R^{2}=140^{2}+120^{2}-2 \times 140 \times 120 \times \cos 132^{\circ}$
$\mathrm{PR}=237.66 \ldots$
Hence PR $=238$ metres (3 sf)
24. Draw diagram and fill in angles

Use sine rule
$\frac{4.8}{\sin 5}=\frac{x}{\sin 64}$
$x=49.5$ metres
Use SOH-CAH-TOA
$\sin 69=\frac{d}{49.5}$

Hence $d=46.21$ metres (now add on height of student)
Height of building $=46.21+1.5=47.7$ metres (3 sf)
25. Area $=1 / 2 \times 300 \times 340 \times \sin 125=41,776.75 . . \mathrm{m}^{2}$

$$
=41,800 \mathrm{~m}^{2}(3 \mathrm{sf})
$$

26. Draw the diagram and using alternate angles find that
$\angle \mathrm{PQR}=40^{\circ}+20^{\circ}=60^{\circ}$
Let $\mathrm{QR}=d$
Using sine rule: $\frac{d}{\sin 85}=\frac{30}{\sin 60}$
Hence d=34.509...
Distance: ship at R to lighthouse $\mathrm{Q}=34.5 \mathrm{~km}(3 \mathrm{sf})$
27. Use cosine rule
$A B^{2}=70^{2}+100^{2}-2 \times 70 \times 100 \times \cos 65^{\circ}$
$\mathrm{AB}=94.7805 .$.
Hence $\mathrm{AB}=95$ metres (2 sf)
28. Area $=1 / 2 \times 10 \times 12.6 \times \sin 72^{\circ}=59.9165 \ldots \mathrm{~m}^{2}$

$$
=59.9 \mathrm{~m}^{2}(3 \mathrm{sf})
$$

29. $\angle \mathrm{ABP}=40^{\circ}$ (angle sum triangle PTB)

Use sine rule in $\triangle \mathrm{PAB}$
$\frac{5.6}{\sin 10}=\frac{A P}{\sin 40}$ hence AP $=20.73$ metres
Now use SOH-CAH-TOA in \triangle PTA
$\cos 40=\frac{P T}{A P}=\frac{P T}{20.73}$ So, $\mathrm{PT}=15.88=15.9 \mathrm{~m}(2 \mathrm{sf})$
30. a) Area $=1 / 2 \times 6 \times 7 \times \sin 120^{\circ}=18.186 \ldots . \mathrm{m}^{2}$
$=18 \mathrm{~m}^{2}(2 \mathrm{sf})$
b) Let angle be θ

For maximum area, $\sin \theta$ must be a maximum
Maximum value of sine function is 1
This occurs when angle is 90°
Hence θ should be 90° for maximum area.
31. Draw diagram and mark in angles - using bearings
$\angle \mathrm{RLT}=15^{\circ}$ and $\angle \mathrm{TL}$ West $=30^{\circ}$
$\angle \mathrm{RTL}=30^{\circ}$ (alternate angles)
Now use sine rule
$\frac{10}{\sin 30}=\frac{R T}{\sin 15}$ hence $\mathrm{RT}=5.176 \ldots$.
Ship has travelled $5.2 \mathrm{~km}(2 \mathrm{sf})$ from R to T

Solutions

10 Gradient and Straight Line

1. a) Gradient $\mathrm{AB}=\frac{3-(-7)}{4-(-1)} \rightarrow \frac{10}{5} \rightarrow 2$
b) Use $y=m x+c$ Eqn is: $y=2 x-5$
c) $(3 \mathrm{k}, \mathrm{k})$ lies on AB , so it will satisfy the equation

Hence, $k=2(3 k)-5 \quad k=6 k-5 \quad 5=5 k \quad k=1$
2. Gradient $=\frac{a-t}{a^{2}-t^{2}}=\frac{a-t}{(a+t)(a-t)}=\frac{1}{a+t}$
3. a) Gradient $\mathrm{AB}=\frac{6-4}{6-2} \rightarrow \frac{2}{4} \rightarrow \frac{1}{2}$

Use $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, so $\mathrm{y}=1 / 2 \mathrm{x}+\mathrm{c}$
Need to find c , so use point $(2,4)$
$4=1 / 2(2)+c \quad 4=1+c \quad c=3$
Equation is $y=1 / 2 x+3$
b) To find M , we know that $\mathrm{y}=0$

Hence $0=1 / 2 x+3$ solving gives $x=-6$
4. This is a simplified version of Question 3.
5. \quad Gradient $=\frac{3-0}{10-4} \rightarrow \frac{3}{6} \rightarrow \frac{1}{2}$

So, $\quad T=1 / 2 S+c$
Find c using $(4,0)$ in the equation
$0=1 / 2(4)+c \quad 0=2+c \quad c=-2$
Equation is: $T=1 / 2 S-2$
6. \quad Gradient $=\frac{9-1}{4-0} \rightarrow \frac{8}{4} \rightarrow 2$
y -intercept $=1$ Equation is: $\mathrm{y}=2 \mathrm{x}+1$
7. Gradient $=\frac{9-3}{3-0} \rightarrow \frac{6}{3} \rightarrow 2$
y -intercept $=3$ Equation is: $\mathrm{y}=2 \mathrm{x}+3$
8. \quad Gradient $=\frac{50-5}{60-0} \rightarrow \frac{45}{60} \rightarrow \frac{3}{4}$
y-intercept $=5$ Equation is: $y=3 / 4 x+5$
9. a) Draw graph - plot points $(0,10)$ - initial state and $(6,40)-6$ mins to add 30 litres at 5 litres $/ \mathrm{min}$ and 40 litres (30 litres added to existing 10)
b) \quad Gradient $=\frac{40-10}{6-0} \rightarrow \frac{30}{6} \rightarrow 5$
y-intercept $=10$
Equation is: $V=5 x+10$

Applications of straight line

1. $\quad \mathrm{B}$ is $(12,40)$ and A is $(0,4)$

Gradient $=\frac{40-4}{12-0} \rightarrow \frac{36}{12} \rightarrow 3, y$-intercept $=4$
Equation is: $\mathrm{m}=\mathrm{h}+4$
2. Gradient $=\frac{100-40}{4-0} \rightarrow \frac{60}{4} \rightarrow 15, y$-intercept $=40$

Equation is: $\mathrm{H}=15 \mathrm{t}+40$
3. B is $(90,82)$ and A is $(0,12)$

Gradient $=\frac{82-12}{90-0} \rightarrow \frac{70}{90} \rightarrow \frac{7}{9}, y$-intercept $=12$
Equation is: $g=\frac{7}{9} h+12$
4. \quad a) Gradient $=\frac{6-2}{12-0} \rightarrow \frac{4}{12} \rightarrow \frac{1}{3}$, y-intercept $=2$

Equation is: $y=\frac{1}{3} x+2 \rightarrow 3 y=x+6$
which can be re-arranged to: $3 y-x=6$
b) Solve simultaneously: $\begin{aligned} & 3 y-x=6 \\ & 4 y+5 x=46\end{aligned}$
multiply (1) by 5 and add giving $\mathrm{y}=4$
substitute into (1) giving $x=6$
Co-ordinates are: $(6,4)$
5. a) Gradient $=\frac{120-160}{12-8} \rightarrow \frac{-40}{4} \rightarrow-10$

Equation is: $P=-10 t+160$ or $P=160-10 t$
b) Put $\mathrm{P}=70$
$70=160-10 t$ and solve for t
$10 \mathrm{t}=160-70 \quad 10 \mathrm{t}=90 \quad \mathrm{t}=9$
Expected to be unconscious at 1700 hrs
6. Draw graph - plot points $(0,240)$ and $(12,0)$

Gradient $=\frac{0-240}{12-0} \rightarrow \frac{-240}{12} \rightarrow-20$
y -intercept $=240$
Hence equation is: $V=-20 t+240$ or $V=240-20 t$
7. Gradient $=\frac{162-138}{80-0} \rightarrow \frac{24}{80} \rightarrow \frac{3}{10}$
y-intercept $=138$
Hence equation is: $\quad s=\frac{3}{10} t+138$

Solutions

11 Simultaneous Equations

1. a) Let cost of 1 nights stay $=£ n$

Let cost of 1 breakfast $=£ b$
$3 n+2 b=145 \quad \ldots$ (1)
b) $5 n+3 b=240$
c) Solve simultaneously to find b, eliminate n
(1) $\times 5$ and (2) $\times 3$ then subtract:
$\mathrm{b}=£ 5$
2. a) $9 b+16 w=2520$
b) $13 b+12 w=2640$
c) Solve to find w and $b \quad(1) \times 3$ and (2) $\times 4$ then subtract to get $b=£ 1.20$ and $w=90$ p
Final design costs $11 b+14 w=£ 25.80$
3. a) $4 p+3 g=130 \quad \ldots$ (1)
b) $2 p+4 g=120 \ldots(2)$
c) solve $(2) \times 2$ then subtract: $g=22 \mathrm{p}, p=16 \mathrm{p}$ hence, 3 peaches +2 grapefruit cost: 92 pence
4. a) $2 x+3 y=580$
b) $x+y=250$
c) eliminate y to find $x(2) \times 3$ and subtract
$x=170 \quad$ So 170 tickets sold to members.
5. a) $4 x+5 y=1550$
b) $2 x+7 y=1450$
c) Solve to find x and y (2) $\times 2$ and subtract to get $y=£ 1.50$ and $x=£ 2.00$
8 patterned and 1 plain will cost $8 x+1 y=£ 17.50$
6. a) Gradient $=\frac{6-2}{12-0} \rightarrow \frac{4}{12} \rightarrow \frac{1}{3}$, y-intercept $=2$

Equation is: $y=\frac{1}{3} x+2 \rightarrow 3 y=x+6$
which can be re-arranged to: $3 y-x=6$
b) Solve simultaneously: $\begin{aligned} & 3 y-x=6 \\ & 4 y+5 x=46\end{aligned}$
multiply (1) by 5 and add giving $\mathrm{y}=4$
substitute into (1) giving $x=6$
Co-ordinates are: $(6,4)$
7. a) $2 l+2 b=260$
b) $5 l+8 b=770$
c) (1) $\times 4$ then subtract gives:
$l=90 \mathrm{cms} ; b=40 \mathrm{cms}$
8. a) Cost of 2 children $(13 \& 15)=2 x$

Cost of 3 children (under 10) $=3 \mathrm{y}$
Cost of adult $=£ 8$
Total paid $=£ 19$
Hence: $2 x+3 y+8=19$ or $2 x+3 y=11$
b) $4 x+y+8=15$ or $4 x+y=7$
c) Solve simultaneously:
$2 x+3 y=11$
$4 x+y=7$
(1) $\times 2$ and subtract, giving $y=3$ and $x=1$
(i) single ticket for 14 year old $=£ 1$
(ii) single ticket for 7 year old child $=£ 3$
9. a) $3 x+2 y=38$
b) $2 x+5 y=51$
(1) $\times 2$ and $(2) \times 3$ and subtract: $y=7$ and $x=8$

Ht. cylinder $=8 \mathrm{~cm}, \mathrm{Ht}$. cuboid $=7 \mathrm{~cm}$.
10.

		20				
		16		4		
-2	5		11		-7	
		7		4		-11

a) number on shaded brick is 20
b) -3

So, from diagram: $p+2 q-5+q-8=-3$
or $p+3 q=10$
c) Using the same idea, $2 q-p=5$

Solve simultaneously:

$$
\begin{align*}
p+3 q & =10 \tag{1}\\
-p+2 q & =5 \tag{2}
\end{align*}
$$

adding: $\quad \mathrm{q}=3, \mathrm{p}=1$
11. a) $3 x+4 y=65$
b) $5 x+7 y=112$
c) Solve simultaneously: $x=7 ; y=11$
12. a) 25 tiles
b) Form two equations - using $1^{\text {st }} \& 2^{\text {nd }}$ arrangements
$1=2+a+b \quad a+b=-1$
$5=8+2 a+b \quad 2 a+b=-3$
Solve to get $a=-2, b=1$
13. a) 3.5 and 4.6
b) Using $1^{\text {st }} \& 2^{\text {nd }}$ rods $\quad 1.1=\mathrm{A}+\mathrm{b}$ $1.4=A+4 b$
solving gives: $\mathrm{b}=0.1$ and $\mathrm{A}=1$

$$
h=1+0.1 n^{2}
$$

Solutions

12 Functions
 Properties of the Parabola

1. a) $a=-1, b=3$ (roots of the equation)
b) The point $(0,-6)$ lies on the curve, so it will satisfy the equation of the curve.
Hence, $-6=k(0+1)(0-3)$ so, $-6=-3 k$ $k=2$
c) Axis of symmetry is $x=1$.

When $\mathrm{x}=1, \mathrm{y}=2(1+1)(1-3)$
Hence $y=-8$
2. a) Cuts y axis when $x=0$, so $y=-12$
b) B and C are roots of eqn. $x^{2}+x-12=0$
factorise $(x+4)(x-3)=0$ hence $\mathrm{x}=-4$, or 3
B is $(4,0)$ and C is $(3,0)$
c) Axis of symmetry is $x=-1 / 2$.

When $x=-1 / 2, \quad y=\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)-12$
Hence $y=\frac{1}{4}-\frac{1}{2}-12 \rightarrow-12 \frac{1}{4}$
Co-ords of min t.p. are ($-1 / 2-121 / 4$)
3. Use the formula with $\mathrm{a}=3, \mathrm{~b}=7, \mathrm{c}=-2$
$\mathrm{x}=-0.21$ or $\mathrm{x}=-2.12$
4. a) When $x=0, y=-3$
b) Solve the equation by factorisation
$4 x^{2}+4 x-3=0 \quad(2 x-1)(2 x+3)=0$
hence $x=1 / 2$ or $x=-\frac{3}{2}$
c) axis of symmetry is $x=-1 / 2$
when $x=-1 / 2 \quad y=-4 \quad$ co-ords of mint.p. $(-1 / 2,-4)$

Applications of the parabola

1. a) Area of glass $=(7-2 x)(10-2 x)$
$\mathrm{A}=70-14 \mathrm{x}-20 \mathrm{x}+4 \mathrm{x}^{2}$ Hence, $\mathrm{A}=4 \mathbf{x}^{2}-\mathbf{3 4 x}+70$
b) $28=4 x^{2}-34 x+70$

Re-arrange: $4 x^{2}-34 x+42=0$
Divide by 2: $2 x^{2}-17 x+21=0$
Factorise: $(2 x-3)(x-7)=0$
Hence $x=1 \frac{1}{2}$ or $x=7$
x cannot $=7$, since this is width of frame,
So $\mathrm{x}=1 \frac{1}{2} \mathrm{cms}$
2. a) Area of A is: $(x+6)(x-1)$

Area of B is: $3(x+3)$
b) So, $(x+6)(x-1)=3(x+3)$

Hence, $x^{2}+6 x-x-6=3 x+9$
simplify: $x^{2}+2 x-15=0$
factorise: $(x+5)(x-3)=0$
so, $\mathrm{x}=3$ or $\mathrm{x}=-5$. $\mathrm{x}=-5$ is not possible
Hence $x=3$
3. a) Solve the quadratic by factorisation
$8+2 x-x^{2}=0$ Hence, $(4-x)(2+x)=0$
$\mathrm{x}=4$ or $\mathrm{x}=-2$, so F is $(4,0)$
The fly is 4 feet to the right of the snake.
b) axis of symmetry is when $x=1$

Hence max height is $\mathrm{H}=8+2-1=9$ feet.
4. $H(3)=9+6(3)-3(3)^{2}=0$

This indicates that the shell is now level with the cliff again.
5. a) Since $\mathrm{BC}=\mathrm{CD}$ then
$2 \mathrm{BC}+2 x=6 \rightarrow \mathrm{BC}+x=3 \quad$ So, $\mathrm{BC}=3-x$
b) Area of rectangle
$=x(3-x)$
There are 2 rectangles but then we have counted the square twice.

Hence Area $=x(3-x)+x(3-x)-x^{2}$
$\mathrm{A}=3 x-x^{2}+3 x-x^{2}-x^{2}$
$\mathrm{A}=6 x-3 x^{2}$
c) Find the roots of the equation $6 x-3 x^{2}=0$

Factorise: $3 x(2-x)=0$
Hence $x=0$ or $x=2 \mathrm{x}=0$ is not possible, So $x=2$.
Axis of symmetry is $x=1$
Max value is on axis of symmetry: $\mathrm{A}=6-3=3 \mathrm{~m}^{2}$
6. a) $l=w+2$
b) Area of extension is: $w(w+2) \quad \rightarrow \quad w^{2}+2 w$

This must not be more than 40% original size $120 \times 0.4=48$ So $w^{2}+2 w=48$ (largest extension)
Hence $w^{2}+2 w-48=0$ so $(w-6)(w+8)=0$
$\mathrm{w}=6$ or -8 (not possible) Width $=6$, Length $=8$
7. a) $18-2 x \mathrm{cms}$
b) $\mathrm{V}=x(18-2 x) \times 100 \quad \mathrm{~V}=1800 x-200 x^{2}$
c) Put $1800 x-200 x^{2}=0$ and solve equation by factorising: $200 x(9-x)=0 \quad x=0$ or $x=9$ maximum is on axis of symmetry $x=4 \frac{1}{2}$ dimensions of gutter are 9 cm wide $\times 41 / 2 \mathrm{~cm}$ high

Solutions

13 Making \& Using Formulae

1. $\mathrm{DB}=2 x \quad$ Let $\mathrm{TD}=h \mathrm{cms}$

Area TDB $=1 / 2$ base \times height $=1 / 2 \times h \times 2 x=h x$
Area of clipboard $=3 x \times 4 x=12 x^{2}$
Area triangle $=1 / 4$ area clipboard $h x=3 x^{2}$ so, $h=3 x$
2. Put $\mathrm{d}=20$ into formula
$20=\frac{n(n-3)}{2} \rightarrow 40=n^{2}-3 n$
Re-arrange : $n^{2}-3 n-40=0$ factorise to solve $(n-8)(n+5)=0$ so $n=8$ or $n=-5$
number of sides must be 8 (-5 not possible)
3. a) $3 \times 25+5 \times 3=90$ pence
b) $75+(\mathrm{m}-3) \times 5 \rightarrow 75+5 \mathrm{~m}-15 \rightarrow 60+5 \mathrm{~m}$
c) $80+(\mathrm{m}-2) \times 2 \rightarrow 80+2 \mathrm{~m}-4 \rightarrow 76+2 \mathrm{~m}$
$76+2 \mathrm{~m}<60+5 \mathrm{~m}$
$16<3 \mathrm{~m} \quad \mathrm{~m}>5.33 \mathrm{mins}$
Minimum number of minutes $=6$ minutes
4. a) putc=3 $I=\frac{20}{2^{3}} \rightarrow \frac{20}{8}=2.5$
b) \quad put $I=10$

$$
10=\frac{20}{2^{c}} \rightarrow 2^{c}=\frac{20}{10} \rightarrow 2^{c}=2 \text { So }, \mathrm{c}=1
$$

c) max intensity 2^{c} is smallest i.e. when $c=0$ then $2^{0}=1$ max intensity is 20
5. a) $30+x$
b) Area $=(30+\mathrm{x})(20+\mathrm{x}) \rightarrow 600+30 x+20 x+x^{2}$

$$
\text { Area }=600+50 x+x^{2}
$$

c) New Area $=30 \times 20 \times 1.4=840$

Solve equation: $840=600+50 x+x^{2}$
re-arrange: $x^{2}+50 x-240=0$
Use formula with $\mathrm{a}=1, \mathrm{~b}=50 \mathrm{c}=-240$
$x=4.41 \mathrm{~cm}$ or $x=-54.41 \mathrm{cms}$
Hence min dimensions are: 35 cms by 25 cms
(nearest cm - remember dimensions are minimum)
6. Volume of space $=$ Vol. Cylinder - Vol cuboid Calculate volume of cylinder.
$V=\pi r^{2} h \rightarrow V=\pi \times 6^{2} \times 20=720 \pi \mathrm{~cm}^{3}$
Cross section of cuboid is a square
Diagonal $=12 \mathrm{~cm}$, Area $=1 / 2$ diag x diag
Area $=1 / 2 \times 12 \times 12=72 \mathrm{~cm}^{2}$
Or use Pythagoras
Side of square $=\sqrt{6^{2}+6^{2}}=\sqrt{72} \mathrm{~cm}$
Area of square $-=\sqrt{72} \times \sqrt{72}=72 \mathrm{~cm}^{2}$
Volume of cuboid $=72 \times 20=1440$
Hence vol of space $=720 \pi-1440=720(\pi-2)$
7. a) Base rate $=£ 425$ per person

2 extra adults so less $£ 60$ per person
Hence cost : $365 \times 4=£ 1460$
b) Base rate $=£ 425$ per person for P persons
($\mathrm{P}-2$) extra adults,
so reduction is: $£ 30 \times(\mathrm{P}-2)$ per person
Hence cost : $425-30(\mathrm{P}-2)$ per person
For P persons: Cost $=£ \mathrm{P}[425-30(\mathrm{P}-2)]$
8. Supplement of y is $180^{\circ}-\mathrm{y}$

Angles in triangle add up to 180°
So, $\quad a+b+180-y=180$
Hence, $y=a+b$
9. a) $(42-15)$ charged at 35 p per $\min =£ 9.45$
$=$ rental $£ 17.50$, Total cost $=£ 26.95$
b) $(t-15) \times 0.35$ for calls + rental of $£ 17.50$
$\rightarrow 0.35 \mathrm{t}-5.25+17.5 \rightarrow £ \mathbf{1 2 . 2 5}+\mathbf{0 . 3 5 t}$
10. a) Since $B C=C D$ then
$2 \mathrm{BC}+2 x=6 \rightarrow \mathrm{BC}+x=3 \quad$ So, $\mathrm{BC}=3-x$
b) Area of rectangle
$=x(3-x)$
There are 2 rectangles but then we have counted the square twice.

Hence Area $=x(3-x)+x(3-x)-x^{2}$
$\mathrm{A}=3 x-x^{2}+3 x-x^{2}-x^{2}$
$\mathrm{A}=6 x-3 x^{2}$
c) Find the roots of the equation $6 x-3 x^{2}=0$

Factorise: $3 x(2-x)=0$
Hence $x=0$ or $x=2 \mathrm{x}=0$ is not possible, So $x=2$.
Axis of symmetry is $x=1$
Max value is on axis of symmetry: $\mathrm{A}=6-3=3 \mathrm{~m}^{2}$
11. a) Pupils $12 \times £ 4.50=£ 54$

Adult: 1 free so $2 \times £ 7.00=£ 14.00$
Total cost $=£ 68.00$
b) Cost of pupils: $£ 4 \times p$

Adults: 2 free $d-2$ adults pay $£ 6(d-2)$
Total cost: $£ 4 \mathrm{p}+6(\mathrm{~d}-2)$
12. Substitute $\mathrm{N}=26$ into formula
$26=\frac{30 v}{2+v}$ re-arrange $26(2+v)=30 v$
Hence, $52+26 v=30 v \rightarrow 4 v=52 v=13$
Speed of cars $=13$ metres per second.
13. a) $C=15 d$
b) $C=50+10 \mathrm{~d}$
c) Eurocar: $170=15 \mathrm{~d} \mathrm{~d}=170 \div 15 \mathrm{~d}=11.333 \ldots$

Apex: $170=50+10 \mathrm{~d} \quad 10 \mathrm{~d}=120 \quad \mathrm{~d}=12$
Apex will give them 12 days.
(NB could also hire car for 3 days from Eurocar with deposit)

Solutions

13 Making \& Using Formulae (continued)
14. $s=\frac{8.6+7.4+10+9.1}{2}=17.55$
$A=\sqrt{(17.55-8.6)(17.55-7.4)(17.55-10)(17.55-9.1)}$
$A=\sqrt{8.95 \times 10.15 \times 7.55 \times 8.45}=\sqrt{5795.524}=76.128$.
$\mathrm{A}=76 \mathrm{~cm}^{2}(2 \mathrm{sf})$
15. a) Expenses: $250 \times 0.29+300 \times 0.15=£ 117.50$
b) $\mathrm{E}=250 \times 0.29+(\mathrm{t}-250) \times 0.15$
$\mathrm{E}=72.50+0.15 \mathrm{t}-37.50=35+0.15 \mathrm{t}$
16. a) 16
b) i) $1300 \div 150=8.66$.. Integral part $=8$
ii) $\left[\frac{1300}{B}\right] \times\left[\frac{1000}{L}\right]$
17. a) $18-2 x \mathrm{cms}$
b) $\mathrm{V}=x(18-2 x) \times 100 \quad \mathrm{~V}=1800 x-200 x^{2}$
c) Put $1800 x-200 x^{2}=0$ and solve equation by factorising: $200 x(9-x)=0 \quad x=0$ or $x=9$ maximum is on axis of symmetry $x=4 \frac{1 / 2}{2}$ dimensions of gutter are 9 cm wide $\times 41 / 2 \mathrm{~cm}$ high
18. a) Cost $=£ 13.50+£ 0.75 \times 4=£ 16.50$
b) $\mathrm{C}=13.50+0.75 \times(w-10)$
$\mathrm{C}=13.50+0.75 w-7.5=6+0.75 w$
19. Ellipse will cut x-axis at -6 and 6 and y-axis at 4 and - 4
(Look for the patterns in the formulae - denominators are squares of where it cuts the axes.)
20. a) Use formula

$$
P=\frac{(40+15)(40-15+1)}{2} \rightarrow \frac{55 \times 26}{2} \rightarrow 715
$$

b) There are a on the top row and 2 a on the bottom row, so put $b=2 a$ in formula

$$
P=\frac{(2 a+a)(2 a-a+1)}{2} \rightarrow \frac{(3 a)(a+1)}{2} \rightarrow \frac{3 a^{2}+3 a}{2}
$$

c) Can $\mathrm{P}=975$ with whole number solutions ?
$975=\frac{3 a^{2}+3 a}{2} \rightarrow 1950=3 a^{2}+3 a$
$3 a^{2}+3 a-1950=0$ dividing by 3
$a^{2}+a-630=0$
Try solving with the formula
with $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-630$
find that solution involves $\sqrt{ } 2521=50.2 \ldots$
So no whole number solutions
21. a) angle above b is 72° (corresponding)
hence $b=180-72=108^{\circ}$
b) In the diagram
$\angle x=\angle z$ (corresponding)
$\angle y+\angle z=180^{\circ}$ (supplementary)
hence $\angle y+\angle x=180^{\circ}$
22. a) Adults: $£ 555$ Child: FREE Extra nights: $£ 29 \times 3$ Total cost $=£ 642$
b) $\mathrm{C}=555+29(\mathrm{t}-14) \rightarrow \mathrm{C}=555+29 \mathrm{t}-406$
$\mathrm{C}=149+29 \mathrm{t}$
23. a) Area of border $=x^{2}-y^{2}=48$

Hence $(x-y)(x+y)=48$
b) Factors of 48 are
$48 \times 1,24 \times 2,16 \times 3,12 \times 4,8 \times 6$
Since x and y are greater than 10 , then $x+y>20$ so only need to consider 48×1 and 24×2
hence $x+y=48$ and $x-y=1$ no solution - numbers need to differ by 1 so one must be odd, and 48 is even
or $x+y=24$ and $x-y=2$
so, $x=13, y=11$
Hence: $x=13, y=11$
24. a) If $\mathrm{AB}=2$ then $\mathrm{BC}=2$ (it is a square)

By Pythagoras: $A C^{2}=2^{2}+2^{2}$ so $\mathrm{AC}=\sqrt{8} \rightarrow 2 \sqrt{2}$
b) In any square of side a.

Diagonal $=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}$
Ratio of side to diagonal is: $\mathrm{a}: \mathrm{a} \sqrt{ } 2$
which is $1: \sqrt{ } 2$
25. a) i) 12 h minutes
ii) $\frac{v}{100} \times 10 \rightarrow \frac{v}{10}$ minutes
iii) $\frac{12 h}{60}+\frac{v}{600} \rightarrow \frac{120 h}{600}+\frac{v}{600} \rightarrow T=\frac{120 h+v}{600}$
b) $T=\frac{120 \times 8+900}{600} \rightarrow \frac{1860}{600} \rightarrow 3.1$ hours

Total time $=3.1$ hours each way $=6.2$ hours
No, it should not be started
Since 1300 to 1900 is only 6 hours.
27. a) $£ 5+£ 26+£ 18=£ 49$
b) Total Fee payable $=5+26+(\mathrm{P}-15)$

$$
=31+P-15=16+P
$$

26. a) Plot graph when $\mathrm{t}=0, \mathrm{M}=80(0,80)$
$(1,40),(2,20),(3,10),(4,5)$
b) $\frac{5}{8}=80(2)^{-t} \rightarrow \frac{5}{8}=\frac{80}{2^{t}} \rightarrow 2^{t}=\frac{640}{5}=128$
$2^{t}=2^{7}$ hence $\mathrm{t}=7$. It will take 7 years.

Solutions

14 Trig Graphs \& Equations

1. hypotenuse $=5($ Pythagoras - or $3,4,5$ triangle $)$
$\sin x=\frac{3}{5} \quad \cos x=\frac{4}{5}$
$\sin ^{2} x+\cos ^{2} x=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{9}{25}+\frac{16}{25}=\frac{25}{25}=1$
2. $\quad a$ is the amplitude, using symmetry, top of wave is 5

Hence $a=-5$ (since sine wave is inverted)
b is number of waves in 360°
whole wave will take up 120°
so $b=3$
$a=-5, b=3$
3. a) 1.30 pm is 1.5 hours after midnight, put $\mathrm{t}=1.5$ into the formula
$D=12.5+9.5 \sin (30 \times 1.5)$
Depth $=19.217 \ldots=19.2$ metres (1 dp)
b) Maximum depth is when sine is maximum (=1) Max depth $=12.5+9.5=22$ metres

Minimum depth is when sine is minimum ($=-1$) Min depth $=12.5-9.5=3$ metres

Maximum difference is $22-3=19$ metres.

4. $y=k \sin a x^{\circ}$	$k=3$ (amplitude) $a=2$ (number of waves in $\left.360^{\circ}\right)$
5. $y=a \cos b x^{\circ}$	$a=3$ (amplitude) $b=2$ (number of waves in $\left.360^{\circ}\right)$

Solving Equations

1. $3 \tan x+5=0 \rightarrow \tan x=-\frac{5}{3}$
$x=\tan ^{-1} \frac{5}{3} \quad$ acute $x=59.03 \ldots$ 。

$x=180-59=121^{\circ}$ or $x=360-59=301^{\circ}$
2. $2+3 \sin x=0 \rightarrow \sin x=-\frac{2}{3}$
$x=\sin ^{-1} \frac{2}{3} \quad$ acute $x=41.81 . .^{\circ}$

$x=180+42=222^{\circ}$ or $x=360-42=318^{\circ}$
3. $7 \cos x-2=0 \rightarrow \cos x=\frac{2}{7}$
$x=\cos ^{-1} \frac{2}{7} \quad$ acute $x=73.398$.。

$x=73^{\circ}$ or $x=360-73=287^{\circ}$
4. $5 \tan x-9=0 \rightarrow \tan x=\frac{9}{5}$
$x=\tan ^{-1} \frac{9}{5} \quad$ acute $x=60.945 .$.

$x=61^{\circ}$ or $x=180+61=241^{\circ}$
5. $5 \sin x+2=0 \rightarrow \sin x=-\frac{2}{5}$
$x=\sin ^{-1} \frac{2}{5} \quad$ acute $x=23.578 . .^{\circ}$

$x=180+24=204^{\circ}$ or $x=360-24=336^{\circ}$
6. $\left.\tan 40=2 \sin x+1 \rightarrow \sin x=-\frac{0.1609}{2} \quad \mathrm{~S} \right\rvert\, \mathrm{A}$
$x=\sin ^{-1} \frac{0.1609}{2} \quad$ acute $x=4.614 . .^{\circ}$

$x=180+5=185^{\circ}$ or $x=360-5=355^{\circ}$
7. $2 \tan 24=\tan q \rightarrow \tan q=0.8905$
$x=\tan ^{-1} 0.8905$ acute $x=41.683 . .^{\circ}$
q is an acute angle, so $\mathrm{q}=42^{\circ}(2 \mathrm{sf})$
8. Solve $y=\sin x$ and $y=0.4 \rightarrow \sin x=0.4$
$x=\sin ^{-1} 0.4 \quad$ acute $x=23.578 .{ }^{\circ}$
$x=24^{\circ}$ or $x=180-24=156^{\circ}$
A is $\left(24^{\circ}, 0.4\right)$ and B is $\left(156^{\circ}, 0.4\right)$

9. a) amplitude $=3$, so $\mathrm{a}=3$
since max is at 90°, there is 1 wave in 360° hence $b=1$
b) $3 \sin x=2 \rightarrow \sin x=\frac{2}{3}$
$x=\sin ^{-1} \frac{2}{3} \quad$ acute $x=41.81 . .^{\circ}$

$x=42^{\circ}$ or $x=180-42=138^{\circ}$
P is $\left(42^{\circ}, 2\right)$ and Q is $\left(138^{\circ}, 2\right)$
10. a) S is $\left(90^{\circ}, 1\right)$
b) $\quad \sin x=0.5$
$x=\sin ^{-1} 0.5$ acute $x=30^{\circ}$

$x=30^{\circ}$ or $x=180-30=150^{\circ}$
T is $\left(30^{\circ}, 0.5\right)$ and P is $\left(150^{\circ}, 0.5\right)$

Solutions

14 Trig Graphs \& Equations (continued)
11. a) A is $\left(90^{\circ}, 0\right)$
b) $\cos x=-0.5$
$x=\cos ^{-1} 0.5$ acute $x=60^{\circ}$

$x=180+60=240^{\circ}$ or $x=360-60=300^{\circ}$
B is $\left(240^{\circ},-0.5\right)$ and C is $\left(300^{\circ},-0.5\right)$
12. a) Maximum value of H is when
cosine is maximum ($=1$)
$\mathrm{h}=1.9+0.3=2.2$ metres
b) After 8 seconds
$h=1.9+0.3 \cos (30 \times 8) \rightarrow 1.75$ metres
c) put $\mathrm{h}=2.05$ in equation
$2.05=1.9+0.3 \cos (30 t) \rightarrow 0.15=0.3 \cos 30 t$
$\rightarrow \cos 30 t=0.5 \quad \rightarrow \quad 30 t=\cos ^{-1} 0.5$
acute $30 t=60^{\circ}, 300, \ldots \ldots$
so, $30 \mathrm{t}=60$
$t=\mathbf{2}$ seconds $\mathbf{-}$ first time

13. a) Put $\mathrm{t}=10$ for October into formula.
$V=1+0.5 \cos (30 \times 10) \rightarrow 1.25$ million gallons
b) t can only take whole number values of 1 to 12
$V(1)=1+0.5 \cos (30 \times 1) \rightarrow 1.43$
$V(2)=1+0.5 \cos (30 \times 2) \rightarrow 1.25$
$V(3)=1+0.5 \cos (30 \times 3) \rightarrow 1$
$V(4)=1+0.5 \cos (30 \times 4) \rightarrow 0.75$
$V(5)=1+0.5 \cos (30 \times 5) \rightarrow 0.567$
$V(6)=1+0.5 \cos (30 \times 6) \rightarrow 0.5$
$V(7)=1+0.5 \cos (30 \times 7) \rightarrow 0.567$
$V(8)=1+0.5 \cos (30 \times 8) \rightarrow 0.75$
$V(9)=1+0.5 \cos (30 \times 9) \rightarrow 1$
$V(10)$ OK see part (a)
$V(11)=1+0.5 \cos (30 \times 11) \rightarrow 1.433$
$V(12)=1+0.5 \cos (30 \times 12) \rightarrow 1.5$
Council will need to consider water rationing in June.

Alternative solution: (Fuller understanding required)

For $\mathrm{t}=1,2,3$ and 10,11,12 the cosine is positive (in $1^{\text {st }}$ and $4^{\text {th }}$ quadrants)

For $t=4,5,6$ and 7, 8, 9 the cosine is negative.
the minimum value will occur when $\cos =-1$
i..e $\cos 180^{\circ}$, then $\mathrm{t}=6$.

Hence $V=1-0.5=0.5$
So, rationing needs to be considered in June
Now look at $\mathrm{t}=5$ and $\mathrm{t}=7$,
Work out V for these and you find
For May ($\mathrm{t}=5$) $\mathrm{V}=0.567$
For July $(t=7) \quad V=0.567$ (symmetrical)
These are over critical level of 0.55 million gallons
So rationing only needs to be considered in June.

See next column for an alternative solution:

Solutions

15 Ratio \& Proportion

1. a)

\quad Ratio -	Parents	Teachers		Pupils	
	1	$:$	3	$:$	15
a)					$\mathbf{4 5}$
For pupils			9	$:$	$\mathbf{4 5}$

So, 9 teachers must accompany them.
b) 100 Tickets given.

For each 15 pupils,
there must be 3 teachers and 1 Parent

This makes a group of 19 .
They can only go in multiples of 19
Largest number of 19 s in 100 is 5
Since $5 \times 19=95$
So, $5 \times 15=75$ pupils can go.
2. Brazilian : Columbian

2 : 3
20 kg of Brazilian, would require 30 kg of Columbian coffee, there is not enough Columbian coffee, so we need to see how much an be made with the Columbian coffee

Each 1 kg tin contains
400 gm Brazilian : 600 gm Columbian

$$
\begin{gathered}
\text { So } 25 \mathrm{~kg}=25000 \mathrm{gm} \\
25000 \div 600=41.667 \ldots . . \mathrm{tins}
\end{gathered}
$$

Hence 41 one kg tins can be made
$* * * * * * * *$ Misprint in question

$$
\text { should read: } \frac{f_{2}}{f_{1}}=\frac{3}{2} \text { and } f_{4}: f_{3}=4: 3
$$

3. a) $f_{2}=f_{1} \times \frac{3}{2}$
and $f_{3}=f_{2} \times \frac{4}{3}$
So $f_{3}=f_{2} \times \frac{4}{3} \rightarrow f_{3}=\left(f_{1} \times \frac{3}{2}\right) \times \frac{4}{3}$
Thus: $\rightarrow f_{3}=f_{1} \times \frac{12}{6} \rightarrow f_{3}=2 f_{1}$
and $\rightarrow \frac{f_{3}}{f_{1}}=\frac{2}{1}$ or $f_{3}: f_{1}=2: 1$
b) $\frac{f_{2}}{f_{1}}=\frac{6}{5} \quad$ and $\quad \frac{f_{3}}{f_{1}}=\frac{3}{2}$

We want to find $\frac{f_{3}}{f_{2}}$

So, $\quad f_{3}=\frac{3}{2} \times f_{1}$

$$
f_{2}=\frac{6}{5} \times f_{1} \quad \rightarrow \quad f_{1}=\frac{5}{6} \times f_{2}
$$

Hence $f_{3}=\frac{3}{2} \times f_{1} \rightarrow f_{3}=\frac{3}{2} \times\left(\frac{5}{6} \times f_{2}\right)$
$\rightarrow f_{3}=\frac{15}{12} \times f_{2} \rightarrow f_{3}=\frac{5}{4} \times f_{2}$
$\rightarrow \frac{f_{3}}{f_{2}}=\frac{5}{4}$ or $f_{3}: f_{2}=5: 4$
So the frequency ratio of a major third is $5: 4$

Solutions

16 Variation \& Proportion

1. a) $T=\frac{k v^{2}}{r}$
b) If v is multiplied by 3 then v^{2} in the formula causes T to be multiplied by 9

If r is halved then T is doubled.
So overall effect is to multiply T by 18
2. a) $R=\frac{k L}{d^{2}}$
b) Wire A: $R=\frac{3 k}{2^{2}} \quad$ Wire B: $R=\frac{k L}{3^{2}}$

Since resistance is same for both wires $\frac{k L}{3^{2}}=\frac{3 k}{2^{2}}$
so, $\frac{\not k L}{3^{2}}=\frac{3 \not k}{2^{2}} \rightarrow L=\frac{3 \times 3^{2}}{2^{2}}=\frac{27}{4}=6.75 \mathrm{~m}$
Length of wire B is 6.75 metres.
3. a) $F=\frac{k V^{2}}{R}$
b) If V is multiplied by 2 , then V^{2} will cause F to be multiplied by 4

So the frictional force will be 80 kilonewtons
4. a) The ratio $\frac{d}{t^{2}}=4$ for all entries in the table i.e. $d=4 t^{2}$ This is direct proportion
b) $d=4 t^{2}$
c) When time is multiplied by $6, \mathrm{~d}$ is multiplied by 6^{2} so d is multiplied by 36 .
5. a) $T=\frac{k S}{E}$
b) $\mathrm{T}=12$, when $\mathrm{S}=20000$ and $\mathrm{E}=20$ $12=\frac{20000 k}{20} \rightarrow 12=1000 k \rightarrow k=\frac{12}{1000}$
c) $T=\frac{12}{1000} \times \frac{36000}{24} \rightarrow \frac{36}{2} \rightarrow 18$ minutes
6. a) $L=k D \sqrt{S}$
b) $\mathrm{L}=30$, when $\mathrm{D}=550$ and $\mathrm{S}=81$

$$
30=k \times 550 \sqrt{81} \rightarrow k=\frac{30}{550 \times 9}=\frac{1}{165}
$$

c) $L=\frac{1}{165} \times 693 \times \sqrt{100}=42$ litres
7. $A=k D^{2}$

For Moon: \quad surface area $=3.8 \times 10^{7}$
If diameter is multiplied by 2 then A will be $\times 4$
Hence surface area of planet $=$

$$
4 \times 3.8 \times 10^{7}=1.52 \times 10^{8} \mathrm{~km}^{2}
$$

8. a) For each x, y in the table the product $x y$ is constant, Hence x and y are in inverse proportion.
b) $x y=9$ or $y=\frac{9}{x}$
9. a) $N=\frac{k}{s^{2}}$
b) If s is doubled then this will halve N , BUT since
s is squared, the result will be $\left(\frac{1}{2}\right)^{2}$ or $\frac{1}{4}$
So only $1 / 4$ the number of letters on the page.
10. a) $T=\frac{k L}{\sqrt{H}}$
b) $\mathrm{T}=10$, when $\mathrm{L}=3.75$ and $\mathrm{H}=2.25$

$$
\begin{aligned}
& 10=\frac{k \times 3.75}{\sqrt{2.25}} \rightarrow k=\frac{10 \times \sqrt{2.25}}{3.75}=4 \\
& T=\frac{4 \times 5}{\sqrt{2.56}} \rightarrow 12.5 \text { seconds }
\end{aligned}
$$

11. $P=k V^{3}$
$\mathrm{P}=75$, when $\mathrm{V}=4$
$75=k \times 4^{3} \rightarrow k=\frac{75}{64}$
When wind speed doubled, $\mathrm{V}=8$
$P=\frac{75}{64} \times 8^{3} \rightarrow \frac{75 \times 8 \times 64}{64}=600$ watts

Alternative way:

$P=k V^{3}$ if V is doubled,
then P will be multiplied by 2^{3} or 8
Hence Power will be $75 \times 8=600$ watts.

Solutions

17 Distance, Speed, Time

Calculations

This question contained a misprint by the SQA, the units should be miles not kilometres.

1. a) $T=\frac{D}{S} \quad T=\frac{x}{75}$
b) Average speed $=$ Total Distance \div Total Time

Total Distance $=2 \mathrm{x}$
Total Time $=\frac{x}{75}+\frac{x}{50} \rightarrow \frac{2 x}{150}+\frac{3 x}{150}$

$$
=\frac{5 x}{150} \rightarrow \frac{x}{30}
$$

Average speed $=2 x \div \frac{x}{30} \rightarrow \frac{2 x}{1} \times \frac{30}{x}=60 \mathrm{mph}$
2. $\mathrm{S}=\mathrm{D} \div \mathrm{T} \quad$ Time $=88 \times 24$ hours $=2112$ hours

Distance $=$ circumference $=\pi \times 1.2 \times 10^{7}$
Hence speed $=\pi \times 1.2 \times 10^{7} \div 2112=17849.95 \ldots$
Speed $=18000 \mathrm{~km}$ per hour (2 sf)
3. $\mathrm{T}=\mathrm{D} \div \mathrm{S}$
$\mathrm{T}=5.9 \times 10^{9} \div 3.0 \times 10^{5}$ seconds
$\mathrm{T}=1.9666 . . \times 10^{4}$ secs
Change to hours $\div 3600$
$\mathrm{T}=19666.667 \div 3600=5.46296 \ldots$ hours
T = $51 / 2$ hours (to nearest $1 / 2$ hour)
4. $\mathrm{T}=\mathrm{D} \div \mathrm{S}$
$\mathrm{T}=2.3 \times 10^{8} \div 3.0 \times 10^{5}$ seconds
$\mathrm{T}=766.666 \ldots$ secs
Change to minutes $\div 60$
$\mathrm{T}=766.667 \div 60=12.7777 \ldots$ mins
$\mathrm{T}=13$ minutes (to nearest minute)
5. a) The trunk road is from 0900 to 0915

Distance $=6$ miles Time $=15$ minutes
Average Speed $=\mathrm{D} \div \mathrm{T}=6 \div 0.25=24 \mathrm{mph}$
b) Between 0915 and 0925 she joins the motorway and is accelerating.
c) Calculate average speed on motorway,
for straight line section of graph from
0925 to 0935 : 16 miles in 10 minutes $=96 \mathrm{mph}$ or
0920 to 0935 : 22 miles in 15 minutes $=88 \mathrm{mph}$
Jennifer appears to have broken the speed limit on the motorway.

Graphs \& Interpretation

1. a) X jumped first
b) X did not open parachute immediately after jumping because his rate of descent was higher than Y's. His graph is a lot steeper, showing he lost height more rapidly just after he jumped.
2. a) A, B, H, J
b) There will be dips for each corner C, F, G The initial acceleration will be longer from A to C There will be one longer horizontal at the beginning (A to C), then three short sections (CF, FG, GJ)
3. a) CD is when the driver put petrol into the tank.
b) BC and DE show motorway driving.

The slope of the graph is less, because less petrol is consumed for a given distance.
4. a) Initially the motor cycle is in front of the car, travelling faster, the motor cycle slows down and the car accelerates, until the car passes the motor cycle at point A.
The motor cycle reaches the end of the road 6 seconds after the car.
b) Initially the bus is stopped 300 m north of the gate. It sets off, accelerating and then slowing down to arrive at the bus stop opposite the gate 30 seconds later.
c) The graph provided in the booklet is not correct, since you need to be able to show 50 m South of the gate for the roundabout

Solutions

18 Sequences

1 a) $S_{3}=1+3+5=9$
b) Look at S_{2} and S_{4}
$S_{2}=1+3=4=2^{2}$
$S_{4}=1+3+5+7=16=4^{2}$
Hence, $S_{n}=n^{2}$
c) $(n+1)^{\text {th }}$ term $=S_{n+1}-S_{n}$
(Try it with some of the terms to convince yourself)
$S_{n+1}-S_{n}=(n+1)^{2}-n^{2}$
$\rightarrow n^{2}+2 n+1-n^{2} \rightarrow 2 n+1$
2. a) $2 \mathrm{p}-4,2 \mathrm{p}-2,2 \mathrm{p}, 2 \mathrm{p}+2,2 \mathrm{p}+4,2 \mathrm{p}+6,2 \mathrm{p}+8$
b) Mean $=$ sum divided by 7

Sum $=14 p+14$
Divide by 7 gives $2 p+2 \rightarrow 2(p+1)$
3. a) $2^{n}=32 \quad 32$ is 2^{5}, so, $2^{n}=2^{5}$
hence $n=5$
b) Sum of five numbers $=(1+2+4+8+16)=32-1$
c) These are powers of 2
sum of 2 numbers is $2^{2}-1$
sum of 3 numbers is $2^{3}-1$
sum of 4 numbers is $2^{4}-1$
Hence sum of n numbers is $2^{n}-1$
4. a) $5^{\text {th }}$ pattern is:
$2 \times(1+2+3+4+5)-5=25$
b) $\mathrm{n}^{\text {th }}$ pattern is
$2 \times(1+2+3+\ldots .+n)-n=n^{2}$
since the patterns gives squares
c) If: $2 \times(1+2+3+\ldots . .+\mathrm{t})-\mathrm{t}=289$
then comparing with b) we see that $\mathrm{t}^{2}=289$
hence $t=\sqrt{ } 289=17$
5. a) $7^{3}+1=(7+1)\left(7^{2}-7+1\right)$
b) $n^{3}+1=(n+1)\left(n^{2}-n+1\right)$
c) Re-arrange this as follows:

$$
\begin{aligned}
& 8 p^{3}+1=8\left(p^{3}+1\right)-7 \\
& p^{3}+1=(p+1)\left(p^{2}-p+1\right) \\
& 8 p^{3}+1=8(p+1)\left(p^{2}-p+1\right)-7
\end{aligned}
$$

6. a) $7=4^{2}-3^{2}$
b) $19=10^{2}-9^{2}$
c) $\quad n^{\text {th }}$ odd number $=n^{2}-(n-1)^{2}$
$n^{2}-(n-1)^{2} \rightarrow n^{2}-n^{2}+2 n-1 \rightarrow 2 n-1$
d) Let odd number be $2 \mathrm{n}-1$

Hence next consecutive odd number is $2 n+1$
Product is: $(2 n-1)(2 n+1) \rightarrow 4 n^{2}-1$
Since $4 n^{2}$ is even then $4 n^{2}+1$ is odd
$12+5-7$
7. a)
$15+6-9$
b) $\mathrm{n}^{\text {th }}$ term: $3 n+(n+1)-(2 n-1)$
$3 n+n+1-2 n+1 \rightarrow 2 n+2$
8. a) $24^{2}-23^{2}=24+23=47$
b) $(n+1)^{2}-n^{2}=n^{2}+2 n+1-n^{2} \rightarrow 2 n+1$
9. a) $5,-1,4, \quad 3,7,10$
b) Sum of first 6 terms: -4

Four times fifth term: $4 \times-1=-4$
c) $p, q, p+q, p+2 q, 2 p+3 q, 3 p+5 q$

Sum of first 6 terms: $8 p+12 q$
Four times fifth term:

$$
4 \times(2 p+3 q) \rightarrow 8 p+12 q
$$

10. a) $1+5+9+13+17+21+25+29+33=9 \times 17$
b) $n \times(2 n-1)$
11. a) $(20 \times 8)-(22 \times 6)=160-132=28$
b) Let upper left corner be n
then upper right corner is $\mathrm{n}+2$
lower left corner is $n+14$
lower right corner is $n+2+14$
Hence:
$(n+14)(n+2)-(n+16)(n)$
$=n^{2}+2 n+14 n+28-n^{2}-16 n \rightarrow 28$
So very 3×3 square will give the answer 28

Solutions

18 Sequences (continued)
12. a) $\frac{7^{2} \times 8^{2}}{4}$
b) $\frac{n^{2} \times(n+1)^{2}}{4}$
c) This will be sum of $1^{\text {st }} \mathrm{n}$ consecutive cubes, minus the first 7 consecutive cubes.
$\frac{n^{2} \times(n+1)^{2}}{4}-\frac{7^{2} \times 8^{2}}{4}$
13. a) 12×14
b) $\frac{1}{2}(n-1) \times \frac{1}{2}(n+3)$
$\rightarrow \frac{1}{4}(n-1)(n+3)$
14. a) Fairly self evident - extend to lower diagonals and complete the shell.
b) If $\mathrm{N}=1$, then $1=a-b$

If $\mathrm{N}=2$, then $5=4 a-2 b$

Solve simultaneously to get: $a=\frac{3}{2}, \quad b=\frac{1}{2}$
15. a) $y^{3}+(4+5+6) y^{2}+(4 \times 5+4 \times 6+5 \times 6) y+4 \times 5 \times 6$
$y^{3}+15 y^{2}+74 y+120$
b) $y^{3}+(a+b+c) y^{2}+(a \times b+a \times c+b \times c) y+a \times b \times c$
$y^{3}+(a+b+c) y^{2}+(a b+a c+b c) y+a b c$
16. a) $\frac{10 \times 11 \times 21}{6}$
b) This should read $1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots+n^{2}$

$$
\frac{n \times(n+1) \times(2 n+1)}{6} \rightarrow \frac{n(n+1)(2 n+1)}{6}
$$

